• Title/Summary/Keyword: Cryogenic temperatures

Search Result 132, Processing Time 0.03 seconds

Evaluations of lap shear and peel strength for epoxy and polyurethane adhesive bonded Triplex sheets at cryogenic temperatures (극저온에서 우레탄과 에폭시 접착제로 접착된 트리플엑스의 전단강도과 박리 강도 평가)

  • Shon, Min-Young
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.39-45
    • /
    • 2011
  • Adhesive joints are widely used for structural joining applications in various fields and environmental conditions. Polyurethane (PU) and Epoxy adhesives are now being used for liquefied natural gas (LNG) carriers at cryogenic temperatures. This paper presents a comprehensive evaluation of epoxy and PU adhesive bonds between Triplex sheets at normal and cryogenic temperatures. The most significant result of this study is that for all adhesives tested, there is a significant decrease in peel strength at cryogenic temperatures. However, the reasons for the decrease in peel strength for epoxy and PU adhesives differ. Consequently, PU adhesives can be considered better suited for use in applications requiring high bonding performance at cryogenic conditions, such as in LNG carriers.

Mechanical Properties of PPLP Material at Cryogenic Temperature

  • Gorospe, Alking B.;Shin, Hyung-Seop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.16-19
    • /
    • 2012
  • In power cables as one of the important power applications adopting HTS tapes, a good insulation should be kept at its optimum performance. As an insulation material for superconducting device applications, polypropylene laminated paper (PPLP) is now widely used instead of the conventional Kraft paper. In addition to its dielectric property, the insulation material should also possess superior mechanical property at cryogenic temperatures and operability that is necessary for the insulation winding process. This study aims to evaluate the mechanical property of the PPLP material at ambient and cryogenic temperatures. At cryogenic temperature, the failure stress of PPLP increased significantly as compared with that at ambient temperature. The failure stress at both temperatures depended upon the sample orientation to the load application.

The Characteristic Test for Gage Factors of Strain Gages in Cryogenic Environment (극저온 환경에서 스트레인 게이지의 게이지상수 및 변형률 측정에 관한 연구)

  • 김갑순;주진원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2205-2213
    • /
    • 1993
  • The characteristic test for gage factors of temperature self-compensated strain gages at cryogenic temperature is presented. By joining the international round robin test on electrical strain gages at cryogenic temperatures, the gage factors of three kinds of widely-used strain gages are obtained at the room temperature, the temperatures of liquid nitrogen and liquid helium. The calibration system which produce precise bending strain is by mechanical loading at cryogenic temperature. This paper also presents the creep characteristic of strain gages at maximum strain level.

Cryogenic Behavior of Perovskite Materials

  • Paik, D.S.;Shin, H.Y.;Yoon, S.J.;Kim, H.J.;Park, C.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.126-129
    • /
    • 1999
  • Dielectric and piezoelectric properties of perovskite materials such as La modified $Pb(Zr,Ti)O_3$ ceramics and $Pb(Zn_{1/3}Nb_{2/3})O_3-PbTiO_3$ single crystals were investigated for cryogenic capacitor and actuator applications. Enhanced extrinsic contributions resulted in piezoelectric coefficient (d33) as high as 250 pC/N at 30 K, superior to that of PZT ($d_{33}$ ~ 100 pC/N). This cryogenic property enhancement was associated with retuning the MPB (or cryogenic temperatures. PZN-PT single crystals exhibited dramatic property improvements such as $d_{33}$ > 500 pC/N at 30 K as a result of an engineered domain state.

  • PDF

Enhanced Plasticity of Bulk Amorphous Alloys at Cryogenic Temperature (벌크 비정질 합금의 초저온 소성)

  • Yoon, Kyeu-Sang;Lee, Mirim;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.8
    • /
    • pp.699-704
    • /
    • 2010
  • We investigated the cryogenic temperature plasticity of a bulk amorphous alloy. Experiments showed that as temperature decreases, the plasticity of the alloy increases, such that the alloy exhibited ~20% of plastic strain when tested at $-196^{\circ}C$. This enhancement in the plasticity at cryogenic temperatures was associated with the formation of abundant shear bands distributed uniformly over the entire surface of the sample. Nonetheless, the serrations, the characteristic feature of the plastic deformation of amorphous alloys, were unclear at $-196^{\circ}C$. In this study, both the enhanced plasticity and the unclear serrations exhibited by the amorphous alloy at cryogenic temperatures were clarified by exploring shear banding behaviors in the context of the velocity and the viscosity of a propagating shear band.

Cryogenic microwave dielectric properties of Mg2TiO4 ceramics added with CeO2 nanoparticles

  • Bhuyan, Ranjan K.;Thatikonda, Santhosh K.;Dobbidi, Pamu;Renehan, J.M.;Jacob, Mohan V.
    • Advances in materials Research
    • /
    • v.3 no.2
    • /
    • pp.105-116
    • /
    • 2014
  • The microwave dielectric properties of $CeO_2$ nanoparticles (0.5, 1.0 & 1.5wt%) doped $Mg_2TiO_4$ (MTO) ceramics have been investigated at cryogenic temperatures. The XRD patterns of the samples were refined using the full proof program reveal the inverse spinel structure without any secondary phases. The addition of $CeO_2$ nanoparticles lowered the sintering temperature with enhancement in density and grain size as compared to pure MTO ceramics. This is attributed to the higher sintering velocity of the fine particles. Further, the microwave dielectric properties of the MTO ceramics were measured at cryogenic temperatures in the temperature range of 6.5-295 K. It is observed that the loss tangent ($tan{\delta}$) of all the samples increased with temperature. However, the $CeO_2$ nanoparticles doped MTO ceramics manifested lower loss tangents as compared to the pure MTO ceramics. The loss tangents of the pure and MTO ceramics doped with 1.5 wt% of $CeO_2$ nanoparticles measured at 6.5K are found to be $6.6{\times}10^{-5}$ and $5.4{\times}10^{-5}$, respectively. The addition of $CeO_2$ nanoparticles did not cause any changes on the temperature stability of the MTO ceramics at cryogenic temperatures. On the other hand, the temperature coefficient of the permittivity increased with rise in temperature and with the wt% of $CeO_2$ nanoparticles. The obtained lower loss tangent values at cryogenic temperatures can be attributed to the decrease in both intrinsic and extrinsic losses in the MTO ceramics.

Measurement of thermal contact resistance at Cu-Cu interface

  • Kim, Myung Su;Choi, Yeon Suk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.48-51
    • /
    • 2013
  • The thermal contact resistance (TCR) is one of the important components in the cryogenic systems. Especially, cryogenic measurement devices using a cryocooler can be affected by TCR because the systems have to consist of several metal components in contact with each other for heat transferring to the specimen without cryogen. Therefore, accurate measurement and understanding of TCR is necessary for the design of cryogenic measurement device using a cryocooler. The TCR occurs at the interface between metals and it can be affected by variable factors, such as roughness of metal surface, contact area and contact pressure. In this study, we designed TCR measurement system at various temperatures using a cryocooler as a heat sink and used steady state method to measure the TCR between metals. The copper is selected as a specimen in the experiment because it is widely used as a heat transfer medium in the cryogenic measurement devices. The TCR between Cu and Cu is measured for various temperatures and contact pressures. The effect of the interfacial materials on the TCR is also investigated.

Hydrogen Sensor Based on Palladium-Attached Fiber Bragg Grating

  • Lee, Sang-Mae;Sirkis, Jim-S.
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.69-73
    • /
    • 1999
  • This paper demonstrated the performance of a palladium wire hydrogen sensor based on a fiber Bragg grating as a means of developing a quasi-distributed hydrogen sensor network capable of operating at cryogenic temperatures. The new approach employing a fiber Bragg grating based palladium hydrogen sensor described in this study is advantageous over other traditional hydrogen sensors because of the multiplexing capability of fiber Bragg gratings. The sensitivity of the hydrogen sensor at room temperature is approximately 2.5 times that of the hydrogen sensor at cryogenic temperatures.

Microwave properties of pulsed-laser SrTiO$_3$ thin films at low temperatures

  • Lee, G.D.;Kim, C.O.;Hong, J.P.;Kwak, J.S.
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.207-210
    • /
    • 2000
  • Properties of SrTiO$_3$ thin films were characterized under the influence of an applied dc voltage utilizing a gold resonator with a flip-chip capacitor. The measurements were performed at microwave frequency ranges and low temperatures cryogenic temperatures. The dielectric constant of 830 and the low loss tangent of 6X10$^{-3}$ at 3.64 GHz were observed at 90 K and 100 V. The quality in the SrTiO$_3$ film was presented in terms of fractional frequency under the bias voltages and cryogenic temperatures.

  • PDF

Design of cryogenic(4.2K) X-band HEMT oscillator for josephson voltage standard (조셉슨 전압 표준을 위한 극저온(4.2K) X-밴드 HEMT 발전기의 설계)

  • 이문규;남상욱;엄경환;김규태
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.3
    • /
    • pp.1-10
    • /
    • 1998
  • A new oscillator configuration is presented and tested for Josephson voltage standard operated at the cryogenic(4.2K) temperature. Features of active devices are investigated in aspects of 1/f noise, output power, and current collapse at low temperature. The output power of oscillator is optimized by a nonlinear design approach called Harmonic Two Signal Method(HTSM). The embedding newworks of the generalized six oscillators with tow loads are derived. A HEMT oscilliator is designed in X-Band for the Josephson voltage standard and tested at room and cryogenic(4.2K) temperatures. Oscillation frequency, output power, C/N ratio, and fequency stability are compared at room and low temperatures.

  • PDF