• Title/Summary/Keyword: Cryogenic material

Search Result 182, Processing Time 0.028 seconds

A Study of Mechanical Characteristics at Room/Cryogenic Temperature of Powder Insulation Materials Applied to Type C Fuel Tank (Type C 연료탱크에 적용되는 분말형 단열 소재의 상온/극저온 기계적 특성에 관한 연구)

  • Kim, Tae-Wook;Oh, Jae-Won;Seo, Young-Kyun;Han, Seong-Jong;Lee, Jae-Myung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.787-793
    • /
    • 2021
  • The global demand for Liquefied Natural Gas(LNG) continues to increase and is facing a big cycle. To keep pace with the increase in international demand for LNG, the demand for LNG fueled ships is also increasing. Since LNG fuel tanks are operated in a cryogenic environment, insulation technology is very important, and although there are various types of insulation applied to Type C tanks, multi-layer insulation and vacuum insulation are typically applied. Powder insulation materials are widely used for storage and transportation of cryogenic liquids in tanks with such a complex insulation structure. In this study, compression tests at room and cryogenic temperature were performed on closed perlite, glass bubble, and fumed silica, which are representative powder insulation material candidates. Finally, the applicability to the Type C fuel tank was reviewed by analyzing the experimental results of this study.

Cryogenic Machining of Open-Cell Silicone Foam (액화질소를 이용한 오픈 셀 실리콘 폼의 냉동 절삭조건 최적화)

  • Hwang, Jihong;Cho, Kwang-Hee;Park, Min-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.32-37
    • /
    • 2014
  • Open-cell silicon foam is difficult to cut using conventional machining processes because of its low stiffness. That is, open-cell silicon foam is easily pressed down when the tool is engaged, which makes it difficult to remove the material in the form of chip. This study proposes an advanced method of machining open-cell silicon foam by freezing the material using liquid nitrogen. Furthermore, the machining conditions are optimized to maximize the efficiency of material removal and minimize the usage of liquid nitrogen by conducting experiments under various machining conditions. The results show that open-cell silicone foam products with free surface can be successfully machined by employing the proposed method.

Prediction of the effective thermal conductivity of microsphere insulation

  • Jin, Lingxue;Park, Jiho;Lee, Cheonkyu;Seo, Mansu;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.36-41
    • /
    • 2014
  • Since glass microsphere has high crush strength, low density and small particle size, it becomes alternative thermal insulation material for cryogenic systems, such as storage and transportation tank for cryogenic fluids. Although many experiments have been performed to verify the effective thermal conductivity of microsphere, prediction by calculation is still inaccurate due to the complicated geometries, including wide range of powder diameter distribution and different pore sizes. The accurate effective thermal conductivity model for microsphere is discussed in this paper. There are four mechanisms which contribute to the heat transfer of the evacuated powder: gaseous conduction ($k_g$), solid conduction ($k_s$), radiation ($k_r$) and thermal contact ($k_c$). Among these components, $k_g$ and $k_s$ were calculated by Zehner and Schlunder model (1970). Other component values for $k_c$ and $k_r$, which were obtained from experimental data under high vacuum conditions were added. In this research paper, the geometry of microsphere was simplified as a homogeneous solid sphere. The calculation results were compared with previous experimental data by R. Wawryk (1988), H. S. Kim (2010) and the experiment of this paper to show good agreement within error of 46%, 4.6% and 17 % for each result.

Mechanical and electrical properties of insulating materials at cryogenic temperature (극저온에서의 절연재료의 기계적.전기적 성질)

  • 김상현;마대영;김현희;정순용;김영석
    • Electrical & Electronic Materials
    • /
    • v.9 no.10
    • /
    • pp.1033-1039
    • /
    • 1996
  • Electrical and mechanical properties of polymer sheet at cryogenic temperature have been investigated. Tensile stress(and strain at break) in liquid nitrogen(77K) of 79.7MPa(l.2%) and 117.4MPa(2.05%) are evaluated for films of Polypropylene (PP) and Kapton, respectively. Dielectric loss tangent(tan .delta.) of PP and Kapton films is almost independent of the frequency and tensile stress. Also, field strength of PP film at 77K decreases with increasing the tensile stress.

  • PDF

Research on Insulation Design of the Bushing for a 154kV Class HTS Transformer (154kV급 고온초전도 변압기용 부싱의 절연설계에 관한 연구)

  • Kwag, D.S.;Cheon, H.G.;Choi, J.H.;Kim, H.J.;Yun, M.S.;Kim, Y.S.;Kim, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.216-217
    • /
    • 2006
  • A common problem in many fields of cryogenic power engineering is to apply high voltage to cold parts of superconducting equipment. In many of these cases a bushing provides electrical insulation for the conductor which makes the transition from ambient temperature to the cold environment. The cryogenic high voltage bushing for the 154kV, 100MVA high temperature superconducting(HTS) transformer is described. The bushing is energized with the line-to-ground voltage between the coaxial center and outer surrounding conductors, in the axial direction there is a temperature difference from ambient to about 77 K. For the insulation design of cryogenic bushing, the arrangement of condenser cone and electrical insulation characteristics of GFRP, Air, $LN_2$ and $GN_2$ were discussed in this paper.

  • PDF

Electrical Insulation Characteristics of Insulators in Cryogenic Liquid for a HTS Apparatus (고온초전도 기기를 위한 극저온 액체 중 절연물의 전기적 특성)

  • Baek, Seung-Myeong;Kwag, Dong-Soon;Cheon, Hyeon-Gweon;Choi, Jae-Hyeong;Kim, Sang-Hyun;Kim, Hyun-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.263-264
    • /
    • 2006
  • For practical electrical insulation design of high temperature superconducting (HTS) power apparatuses, knowledge of the dielectric behavior of insulators in cryogenic liquid such as liquid nitrogen ($LN_2$) is essential. So in this paper, we discussed experimental investigations of breakdown and V-t characteristics of several insulators such as Kapton and glass fiber reinforced plastic (GFRP) that are candidates of insulator for HTS apparatus in cryogenic liquid. And we investigated the degradation of these insulation samples after breakdown with the microscope and SEM photograph. Moreover, survival and hazard analysis were performed.

  • PDF

A Study on the Electrical Properties for the Insulation Design of a Conduction-Cooled HTS SMES (전도냉각 HTS SMES 절연설계를 위한 전기적 특성연구)

  • Choi, Jae-Hyeong;Kwag, Dong-Soon;Cheon, Hyeon-Gweon;Baek, Seung-Myeong;Kim, Hae-Jong;Seong, Ki-Chul;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.226-227
    • /
    • 2006
  • The conduction-cooled HTS SMES is operated in cryogenic and high vacuum condition. Thus, Insulation design at cryogenic temperature and high vacuum is a key and an important element that should be established to accomplish miniaturization that is a big advantage of HTS SMES. Therefore, we need active research and development of insulation concerning application of the conduction-cooled HTS SMES. Therefore, in this study, we experimented about insulation characteristic high vacuum and cryogenic similar to driving condition of SMES system. Also, investigated about insulation characteristic of suitable some materials to insulator for conduction-cooled HTS SMES. As this results, we possessed basis data for insulation materials selection and insulation design for development of 600 kJ class conduction-cooled HTS SMES.

  • PDF

Characteristics of tools for improving the tool life and forged product on cold forging (냉간 단조용 금형 수명 및 단조품 품질 향상을 위한 금형 특성 연구)

  • Lee Y.S.;Kwon Y.N.;Kwon Y.C.;Lee J.H.;Choi S.T.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.125-126
    • /
    • 2006
  • The characteristics of the tool system give many effects into the costs and qualities for the finished components. Therefore, a tool life is one of the important issues on cold forging industry. However, since variables related with tool life are many complicated, the studies for solution should be investigated by the systematic research approach. In this study, heat-treatment of tool material is investigated to improve the tool life. Deep cryogenic treatment of tool steel is very efficient to improve the wear resistance due to the fine carbide. And, it is investigated that the shape and dimension of tool give effect into both tool life and quality of forged product.

  • PDF

Effects of Low Temperature on Mechanical Properties of Steel and Ultimate Hull Girder Strength of Commercial Ship (저온환경이 선박 및 해양플랜트용 탄소강재의 재료강도특성 및 상선의 최종 종강도 거동에 미치는 영향)

  • Kim, Do Kyun;Park, Dae Kyeom;Seo, Jung Kwan;Paik, Jeom Kee;Kim, Bong Ju
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.427-432
    • /
    • 2012
  • This paper presents the material properties of carbon steels for ships, and offshore structures (ASTM A131) are tested under a series of arctic and cryogenic temperature conditions. For material tension tests, among the ASTM 131 steels, Grades A and B of mild steel and Grade AH of high tensile steel have been used. The obtained mechanical properties of the materials from the material tension tests were applied in a 13,000TEU class container ship to define the effect of low temperature on the ultimate longitudinal strength of the target structure by using the ALPS/HULL intelligent supersize finite element method. The tensile coupon test results showed increased strength and nonuniform fracture strain behaviors within different grades and temperatures. Increasing the material strength resulted in increasing the ultimate longitudinal strength of the ship.

Design of Filament Wound Composite Tubes under Thermal Contraction (열수축을 하는 필라멘트 와인딩 복합재료 관의 설계)

  • 정태은;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2407-2417
    • /
    • 1993
  • Thermal deformations and stresses due to temperature changes are the serious problems in cryogenic structures such as the torque tube in a superconducting generator, In this paper, the equations of thermal expansion coefficients expressed only by material properties and winding angles are derived for the filament wound composite tubes. The experimental results of thermal contraction of CFRP tubes are compared with those from theoretical approach. Composite tubes with optimally regulated thermal expansion coefficient are designed on the basis of the study for the torque tube in the superconducting generator with temperature distributions varying from 300K to 4.2 K. The filament winding angle of composites resisting thermal stresses properly is sought by the finite element method using layered shell elements. The results show that the composite tubes designed for the requirements in cryogenic environments can effectively cope with the thermal stress problem.