• Title/Summary/Keyword: Cryogenic fluids

Search Result 43, Processing Time 0.026 seconds

Development of Cryogenic Turbopump Test Facility (극저온 터보펌프 성능시험설비의 개발)

  • Kang, Jeong-Seek;Kim, Jin-Sun;Kim, Jin-Han
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.340-345
    • /
    • 2003
  • Cryogenic turbopump test facility(CTTF) is designed and developed. Hydraulic and cavitation performance of turbopump in cryogenic environment can be measured. Working fluid is liquid nitrogen and operating temperature is $-197^{\circ}C$. Liquid nitrogen run tank, catch tank and pressurizing tank has been built and remote tank pressure control system are installed. Maximum power of turbopump is 320kW and its maximum speed is 32000rpm. Cryogenic fluids and lubricating systems are effectively separated that long test times are acquired. Therefore hydraulic and cavitation performance can be measured accurately and effectively. This facility will contribute greatly to the development of turbopump for KSLV.

  • PDF

Application of CFD to tile Calculation of 2 Phase Cryogenic Heat Transfer Processes (2상 극저온 열전달 과정 계산에서의 CFD 응용)

  • Liu, Jie.;Yue, Haibo;Chung, Mo;Bai, Cheol-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.141-147
    • /
    • 2011
  • A two-phase numerical model for plate-fin heat exchangers with plain fins and wave fins is studied incorporating the thermodynamic properties and the characteristics of fluid flow. The numerical simulations for the two fins in cryogenic conditions are earned out by employing a homogenous two-phase flow model with the CFD code ANSYS CFX. The heat transfer coefficients and the friction factor for nitrogen saturated vapor condensation process inside two types of plate fin heat exchanger are evaluated including the effects of saturation temperature (pressure), mass flow rate and inlet vapor quantity. The convective heat transfer coefficients and friction factors will be used for design of plate-fin type heat exchangers operating under cryogenic conditions.

  • PDF

On the Leakage Analysis of a Full Containment Tank Using a FEM

  • Kim, Chung-Kyun
    • KSTLE International Journal
    • /
    • v.7 no.2
    • /
    • pp.45-50
    • /
    • 2006
  • In this paper, the leakage safety of prestressed concrete structure including the insulation panels has been analyzed using a finite element analysis just after a collapse of 9% nickel inner tank. This FEM study shows that the outer tank may contain the leaked cryogenic liquid for the time being until the primary pump in the inner tank transports stored cryogenic liquids to the nearest LNG storage tank before the outer tank is demolished. This means that the total tank thickness from the insulation panel to the outer tank system safely may retain the leaked cryogenic fluids. The FE computed results indicate that the current structure in a full containment tank is obviously enough to securing the leak-proof safety of the tank system with two primary pumps.

Cryogenic Performance Test of LOX Turbopump in Liquid Nitrogen (액체질소를 이용한 산화제펌프의 극저온 성능시험)

  • Kim, Jin-Sun;Hong, Soon-Sam;Kim, Dae-Jin;Choi, Chang-Ho;Kim, Jin-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.391-397
    • /
    • 2010
  • Performance tests of a liquid-oxygen pump were carried out using liquid nitrogen (LN2) as a working fluid in a cryogenic turbopump test facility in Korea Aerospace Research Institute (KARI). The tests were performed at 30-55% of the design rotational speed, and the results were compared with those from a water test. The experimental results confirmed the similarity of the hydraulic performance, which allows the prediction of the pump performance at a design rotational speed of 20,000 rpm. The overall cavitation performance of the pump in the cryogenic environment was better than that in the water environment for all ranges of flow rates and rotational speeds. Critical cavitation number at the design flow rate was determined as 0.012 from the cryogenic test, and as 0.024 from the water test. The improved cavitation performance is due to the thermodynamic effect in cryogenic fluids.

Prediction of the effective thermal conductivity of microsphere insulation

  • Jin, Lingxue;Park, Jiho;Lee, Cheonkyu;Seo, Mansu;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.36-41
    • /
    • 2014
  • Since glass microsphere has high crush strength, low density and small particle size, it becomes alternative thermal insulation material for cryogenic systems, such as storage and transportation tank for cryogenic fluids. Although many experiments have been performed to verify the effective thermal conductivity of microsphere, prediction by calculation is still inaccurate due to the complicated geometries, including wide range of powder diameter distribution and different pore sizes. The accurate effective thermal conductivity model for microsphere is discussed in this paper. There are four mechanisms which contribute to the heat transfer of the evacuated powder: gaseous conduction ($k_g$), solid conduction ($k_s$), radiation ($k_r$) and thermal contact ($k_c$). Among these components, $k_g$ and $k_s$ were calculated by Zehner and Schlunder model (1970). Other component values for $k_c$ and $k_r$, which were obtained from experimental data under high vacuum conditions were added. In this research paper, the geometry of microsphere was simplified as a homogeneous solid sphere. The calculation results were compared with previous experimental data by R. Wawryk (1988), H. S. Kim (2010) and the experiment of this paper to show good agreement within error of 46%, 4.6% and 17 % for each result.

LIQUID FLOW AND EVAPORATION SIMULATION OF CRYOGENIC FLUID IN THE WALL OF CRYOGENIC FLUID CARGO CONTAINMENT SYSTEM (극저온 유체 화물창 방벽 내의 액체유동 및 기화 시뮬레이션)

  • Lee, Hee-Bum;Park, Bum-Jin;Rhee, Shin-Hyung;Bae, Jun-Hong;Lee, Kyung-Won;Jeong, Wang-Jo;An, Sang-Jun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.308-315
    • /
    • 2008
  • 극저온 유체를 운반하는 선박의 화물창은 보통 1차 방벽과 2차 방벽으로 구성되어 있다. 1차 방벽에 소량의 극저온 유체의 누출이 생기더라도, 액밀이 되는 2차 방벽에서 추가적인 극저온 유체의 누출을 방지할 수 있기 때문이다. 그러나 2차 방벽에 추가적인 손상이 생길 경우 유리솜으로 만들어진 Flat Joint를 거쳐 선체내벽까지 극저온 유체에 노출될 가능성이 있게 된다. 본 연구의 관심사는 2차 방벽의 손상 정도에 따라, 그리고 누출되는 극저온 유체의 양에 따라, 내측선체에 얼마나 영향이 미치는가를 알아보는 것이다. 이를 위해 본 연구에서는 극저온 유체를 운반하는 선박의 화물창을 구성하는 2차 방벽에 구멍을 뚫어 Flat Joint 사이로 극저온 유체가 흘러 들어가도록 격자를 생성한 후, CFD 소프트웨어를 이용하여 극저온 유체의 누출에 대한 계산을 수행 하였으며 이를 실험 결과와 비교 분석 하였다. 실험과 계산 결과를 살펴보면, 극저온 유체량에 따라 내측 선체에의 피해를 최소화 할 수 있음을 확인하였다.

  • PDF

A Study of the Reverse Engineering of a Two-Stage Impeller-Submerged Pump for Cryogenic Fluids (극저온용 2단 임펠러 액중펌프 역설계에 관한 연구)

  • Kweon, Byung Soo;Yi, Chung-Seob;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.9-15
    • /
    • 2017
  • This study represents basic research for the development of submerged pump technology applicable to transfer and storage of a cryogenic liquids. Its purpose is to secure baseline design data by applying reverse engineering to the process of developing a submerged cryogenic pump. The two-stage model included in the ARTICK Series LNG Submerged Pump produced by Vanzetti of Italy was selected for analysis for development of a localized product, and was disassembled for reverse engineering. The pump was disassembled after analyzing its processing/assembly characteristics such as shrinkage of fittings. In addition, the materials used in manufacturing of the main components were analyzed, and the ingredients were confirmed. As a result, a design drawing for each component required for product development was secured via foundational design, and a test product was manufactured by maximizing the application of appropriate domestic technologies.

LIQUID FLOW AND EVAPORATION SIMULATION OF CRYOGENIC FLUID IN THE WALL OF CRYOGENIC FLUID CARGO CONTAINMENT SYSTEM (극저온 유체 화물창 방벽 내의 액체유동 및 기화 시뮬레이션)

  • Lee, Hee-Bum;Park, Bum-Jin;Rhee, Shin-Hyung;Bae, Jun-Hong;Lee, Kyung-Won;Jeong, Wang-Jo;An, Sang-Jun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.308-315
    • /
    • 2008
  • 극저온 유체를 운반하는 선박의 화물창은 보통 1차 방벽과 2차 방벽으로 구성되어 있다. 1차 방벽에 소량의 극저온 유체의 누출이 생기더라도, 액밀이 되는 2차 방벽에서 추가적인 극저온 유체의 누출을 방지할 수 있기 때문이다. 그러나 2차 방벽에 추가적인 손상이 생길 경우 유리솜으로 만들어진 Flat Joint를 거쳐 선체내벽까지 극저온 유체에 노출될 가능성이 있게 된다. 본 연구의 관심사는 2차 방벽의 손상 정도에 따라, 그리고 누출되는 극저온 유체의 양에 따라, 내측선체에 얼마나 영향이 미치는가를 알아보는 것이다. 이를 위해 본 연구에서는 극저온 유체를 운반하는 선박의 화물창을 구성하는 2차 방벽에 구멍을 뚫어 Flat Joint 사이로 극저온 유체가 흘러 들어가도록 격자를 생성한 후, CFD 소프트웨어를 이용하여 극저온 유체의 누출에 대한 계산을 수행 하였으며 이를 실험 결과와 비교 분석 하였다. 실험과 계산 결과를 살펴보면, 극저온 유체량에 따라 내측 선체에의 피해를 최소화 할 수 있음을 확인하였다.

  • PDF

Numerical Analysis of Cryogenic Liquid Nitrogen Jets at Supercritical Pressures using Multi-Environment Probability Density Function approach (다점 확률분포 모델을 이용한 초임계 압력 액체질소 제트 해석)

  • Jung, Kiyoung;Kim, Namsu;Kim, Yongmo
    • Journal of ILASS-Korea
    • /
    • v.22 no.3
    • /
    • pp.137-145
    • /
    • 2017
  • This paper describes numerical modeling of transcritical and supercritical fluid flows within a liquid propellant rocket engine. In the present paper, turbulence is modeled by standard $k-{\varepsilon}$ model. A conserved scalar approach in conjunction with multi-environment probability density function model is used to account for the turbulent mixing of real-fluids in the transcritical and supercritical region. The two real-fluid equations of state and dense-fluid correction schemes for mixtures are used to construct thermodynamic data library based on the conserved scalar. In this study, calculations are made on two cryogenic nitrogen jets under different chamber pressures. Sensitivity analysis for two different real-fluid equations of sate is particularly emphasized. Based on numerical results, precise structures of cryogenic nitrogen jets are discussed in detail. Numerical results show that the current real-fluid model can predict the essential features of the cryogenic liquid nitrogen jets.

Flow Characteristics of Cryogenic Butterfly Valve for LNG Carrier (Part 1 : CFD Analysis and its Comparison with Experimentation) (LNG선용 버터플라이밸브의 유동특성에 관한 연구 (제1부 : CFD해석과 실험결과의 비교))

  • Kim, Sang-Wan;Choi, Young-Do;Kim, Jung-Hwan;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.2
    • /
    • pp.13-19
    • /
    • 2008
  • Butterfly valves are widely used as control valves for industrial process. For the definition of optimum configuration of the valve, wide range of related studies has been actively conducted in the case of working fluids of water or air under the normal temperature. Recently, internal flow and performance characteristics of cryogenic butterfly valve for LNG carrier take a growing interest in the field of research and development. Therefore, present study is aimed to investigate the internal flow and performance characteristics of the cryogenic butterfly valve because the study result for the valve can be hardly found at present. Part 1 of this paper describes the study result of a butterfly valve model under the condition of the normal temperature. Succeeding Part 2 of this paper will describe the internal flow characteristics of a cryogenic butterfly valve for LNG carrier. The results of Part 1 show that pressure loss coefficients and flow rate coefficients obtained by the present experiment and CFD analysis agree well each other. Moreover, internal flow visualization for the valve by CFD analysis and PIV measurement have revealed complicated flow patterns of the internal flow field in detail.