• Title/Summary/Keyword: Cryogenic and high pressure type

Search Result 16, Processing Time 0.035 seconds

Design of partial emission type liquid nitrogen pump

  • Lee, Jinwoo;Kwon, Yonghyun;Lee, Changhyeong;Choi, Jungdong;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.64-68
    • /
    • 2016
  • High Temperature Superconductor power cable systems are being developed actively to solve the problem of increasing power demand. With increases in the unit length of the High Temperature Superconductor power cable, it is necessary to develop highly efficient and reliable cryogenic pumps to transport the coolant over long distances. Generally, to obtain a high degree of efficiency, the cryogenic pump requires a high pressure rise with a low flow rate, and a partial emission type pump is appropriate considering its low specific speed, which is different from the conventional centrifugal type, full emission type. This paper describes the design of a partial emission pump to circulate subcooled liquid nitrogen. It consists of an impeller, a circular case and a diffuser. The conventional pump and the partial emission pump have different features in the impeller and the discharge flow passage. The partial emission pump uses an impeller with straight radial blades. The emission of working fluid does not occur continuously from all of the impeller channels, and the diffuser allows the flow only from a part of the impeller channels. As the area of the diffuser increases gradually, it converts the dynamic pressure into static pressure while minimizing the loss of total pressure. We used the known numerical method for the optimum design process and made a CFD analysis to verify the theoretical performance.

A study on designing a level gauge for cryogenic liquefied storage vessel by using a differential pressure sensor (차압센서를 이용한 극저온 액화가스 저장용기의 액면측정장치 설계에 관한 연구)

  • Choi, Dong-Joon;Lim, Hyung-Il;Doh, Deog-Hee;Cho, Jong-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.384-390
    • /
    • 2013
  • The sizes of cryogenic vessels and storage tanks are becoming bigger due to strong demands from semiconductor and LCD industry as well as high-tech electronic industry. Conventional level and pressure gauges used for cryogenic vessels were analog types which made exact measurement difficult for the remained quantity at lower levels due to their poor accuracy. In this study, a design for a digital type gas level gauge which can measure the pressure and level inside of the cryogenic liquefied gas storage tanks has been proposed by using a differential pressure sensor, in which the measured data are monitored by a host PC and are transferred to a mobile printer for data confirmation at local station.

A Study on Air-tightness of High Pressure Liquid Hydrogen Pumping System at the Low Temperature (액체수소용 초저온 고압 피스톤 펌프의 기밀성 향상에 관한 기초연구)

  • Lee, Jonggoo;Lee, Jongmin;Lee, Jongtai
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.4
    • /
    • pp.302-310
    • /
    • 2013
  • As an initial step to develop a liquid hydrogen pump of piston type operated under cryogenic and high pressure, leakage and piston head shape for the piston pump were discussed with temperature and pressure. As the results, the leakage depended on correlation among density, viscosity, clearance area by the low temperature. In order to reduce the leakage, it was found that the air-tightness can be improved by minimizing contact surface between piston and cylinder, and also increasing pressure in-cylinder can reduce piston clearance. Among the proposed piston shapes, D type piston shape had the most air-tightness. D type piston had smaller contact surface than other piston shape and easier expansion of cup shape by pressure. The leakage of D type piston shape was found about 7%, compared with A type piston shape. But it was required that analyze about vapor lock by friction and wear resistance.

The Study on Development of Performance in Cryogenic Piston Pump (초저온 피스톤 펌프의 성능 향상에 관한 연구)

  • Lee, Jongmin;Lee, Jonggoo;Lee, Kwangju;Lee, Jongtai
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.3
    • /
    • pp.240-246
    • /
    • 2014
  • In order to develop a universal cryogenic piston pump of small size for increasing utilization of liquid hydrogen, dynamic compression performance of piston pump were evaluated and improvements were also discussed for piston rod and piston tip. The cryogenic piston pump has crosshead structure and inclined cup shape piston tip. As the results, it was found that i) insulation of heat flow from piston-rod part is required for stable operation ii) improving the self-clearance adjustment effect of piston tip and reducing piston eccentricity were desirable to promote pumping pressure and operating range.

Development of the Spherical Flange used in a Cryogenic High Pressure Pipe (극저온 고압 배관용 구형 플랜지 개발)

  • Moon, Il-Yoon;Moon, In-Sang;Yoo, Jae-Han;Lee, Soo-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.283-288
    • /
    • 2011
  • The spherical flange was designed to apply to a cryogenic high pressure pipe of the Liquid Rocket Engine. It is designed that the spherical flange is able to be assembled and kept airtight upto $2.5^{\circ}$ of the axial misalignment between the combined components. It increases the degree of freedom of the engine assembly. The spherical flange is composed of a ball and socket joint, a metal seal and spherical type bolts, washers. The prototype was verified by leak test at the room temperature and the cryogenic temperature. Additionally the strength test and the destructive test were performed at the room temperature.

  • PDF

Development of the Spherical Flange Used in a Cryogenic High Pressure Pipe (극저온 고압 배관용 구형 플랜지 개발)

  • Moon, Il-Yoon;Moon, In-Sang;Yoo, Jae-Han;Lee, Soo-Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.3
    • /
    • pp.64-69
    • /
    • 2011
  • The spherical flange was designed to apply to a cryogenic high pressure pipe of a liquid rocket engine. It is designed that the spherical flange is able to be assembled and kept airtight up to $2.5^{\circ}$ of the axial misalignment between the combined components. It increases the degree of freedom of the engine assembly. The spherical flange is composed of a ball and socket joint, a metal seal, spherical type bolts and washers. The prototype was verified by leak test at the room temperature and the cryogenic temperature. Additionally the strength test and the destructive test were performed at the room temperature.

Structural Capability Evaluation of the Conventional and Pilot Type Valves for LNG/LNG-FPSO Ships (LNG/LNG-FPSO 선박용 컨벤셔널 및 파일럿 타입 밸브의 구조성능평가)

  • Hwang, Dong Wook;Kim, Sung Jin;Bae, Jun Ho;Jung, Sung Yuen;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1331-1339
    • /
    • 2012
  • Safety valve used in LNG/LNG-FPSO ships is a high value valve, and it plays an important role in maintaining a fixed level of pressure by emitting LNG gas out of pipes in LNG piping system under the cryogenic and high-pressure condition when the pressure of the system connected with the LNG storage tank and pipes reaches over the set pressure. The structural stability is required for the inner pressure and thermal load because of the cryogenic and high-pressure condition, and a reliability of the safety valve is necessary for impact and deformation by opening the valve. But, the safety valve, which plays a key role for a safety of the transport and storage system, is depended on imports for over 90%, and in domestic production, the design of the valve is performed on the basis of experiences of the works without quantitative analysis for the inner operation characteristics and structural stability of the valve. In this study, impact velocity is calculated by theoretical analysis for obtaining the structural stability of the guide according to the impact load by opening the valve. The shape of the guide and the diaphragm for satisfying the structural stability are suggested and verified by using a thermal-structural analysis.

Dielectric Insulation Properties of Double Pancake Coil Type HTS Transformer (Double Pancake Coil형 고온초전도 변압기의 전기적 절연 특성)

  • 백승명;정종만;이현수;한철수;김상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.2
    • /
    • pp.151-156
    • /
    • 2003
  • High temperature superconductor can only be applied against an engineering specofication that has to be determined for each particular application form the design requirements for economic viability and for operation margins in service. However, in order to realize the HTS transformer, it is necessary to establish the high voltage insulation technique in cryogenic temperature. Therefore, the composite insulation of double pancake coil type transformer are described and AC breakdown voltage characteristics of liquid nitrogen(LN$_2$) under HTS pancake coil electrode made by Bi-2223/Ag are studied. The Breakdown of LN$_2$ is dominated electrode shape and distance. The influence of pressure on breakdown voltage is discussed with th different electrode. For the electrical insulation design of turn-to-turn insulation for the HTS transformer, we tested breakdown strength of insulation sheet under varying pressure. And we investigated surface flashover properties of LN$_2$ and complex conition of cryogenic gaseous nitrogen(CGN$_2$) obove a LN$_2$ surface. The surface voltage of GFRP was measured as a function of thickness and electrode distance in LN$_2$ and complex condition of CGN$_2$ above a LN$_2$ surface. this research presented information of electrical insulation design for double pancake coil(DPC) type HTS transformer.

Technology Trend of Small Poppet Type Check Valve for Aerospace Application (항공우주용 소형 포펫 체크밸브 기술 동향)

  • Yoo, Jae-Han;Lee, Soo-Yong
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.158-164
    • /
    • 2011
  • Check valves developed for aerospace applications and commercially available for the applications are investigated. The examples include the ones for launch vehicles, SSME (Space Shuttle Main Engine) and GSE (Ground Support Equipment) purges developed by NASA, requiring high reliability, and the ones by KARI. Also the commercial ones for room and cryogenic temperatures by major valve US companies. Relations of design factors such as seal materials and spring rate to principal performances like operating temperature/pressure and cracking pressure are explained. Then potential operational problems such as chatter and contaminations are explained. Also, filters, fittings for end connections and cleanliness requirements for the applications are considered.

  • PDF

Assessment of DTVC Operation Efficiency for the Simulation of High Vacuum and Cryogenic Lunar Surface Environment (고진공 및 극저온 달의 지상 환경 재현을 위한 지반열진공챔버 운영 효율성 평가)

  • Jin, Hyunwoo;Chung, Taeil;Lee, Jangguen;Shin, Hyu-Soung;Ryu, Byung Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.125-134
    • /
    • 2022
  • The Global Expansion Roadmap published by the International Space Exploration Coordination Group, which is organized by space agencies around the world, presents future lunar exploration guidance and stresses a lunar habitat program to utilize lunar resources. The Moon attracts attention as an outpost for deep space exploration. Simulating lunar surface environments is required to evaluate the performances of various equipment for future lunar surface missions. In this paper, an experimental study was conducted to simulate high vacuum pressure and cryogenic temperature of the permanent shadow regions in the lunar south pole, which is a promising candidate for landing and outpost construction. The establishment of an efficient dirty thermal vacuum chamber (DTVC) operation process has never been presented. One-dimensional ground cooling tests were conducted with various vacuum pressures with the Korean Lunar Simulant type-1 (KLS-1) in DTVC. The most advantageous vacuum pressure was found to be 30-80 mbar, considering the cooling efficiency and equipment stability. However, peripheral cooling is also required to simulate a cryogenic for not sublimating ice in a high vacuum pressure. In this study, an efficient peripheral cooling operation process was proposed by applying the frost ratio concept.