• Title/Summary/Keyword: Cryogenic Tensile Test

Search Result 34, Processing Time 0.032 seconds

Effect of C, Mn and Al Additions on Tensile and Charpy Impact Properties of Austenitic High-manganese Steels for Cryogenic Applications (극저온용 오스테나이트계 고망간강의 인장 및 충격 특성에 미치는 C, Mn, Al 첨가의 영향)

  • Lee, Seung-Wan;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.29 no.3
    • /
    • pp.189-195
    • /
    • 2019
  • The effect of C, Mn, and Al additions on the tensile and Charpy impact properties of austenitic high-manganese steels for cryogenic applications is investigated in terms of the deformation mechanism dependent on stacking fault energy and austenite stability. The addition of the alloying elements usually increases the stacking fault energy, which is calculated using a modified thermodynamic model. Although the yield strength of austenitic high-manganese steels is increased by the addition of the alloying elements, the tensile strength is significantly affected by the deformation mechanism associated with stacking fault energy because of grain size refinement caused by deformation twinning and mobile dislocations generated during deformation-induced martensite transformation. None of the austenitic high-manganese steels exhibit clear ductile-brittle transition behavior, but their absorbed energy gradually decreases with lowering test temperature, regardless of the alloying elements. However, the combined addition of Mn and Al to the austenitic high-manganese steels suppresses the decrease in absorbed energy with a decreasing temperature by enhancing austenite stability.

CRYOGENIC AND ELEVATED TEMPERATURE CYCLING OF CARBON / POLYMER COMPOSITES FOR RESUABLE LAUNCH VEHICLE CRYOGENIC TANKS (왕복선 연료탱크 적용을 위한 탄소/고분자 복합재료의 극저온-고온 싸이클링)

  • 예병한;원용구
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.151-155
    • /
    • 2003
  • An apparatus was developed to repetitively apply a -196 $^{\circ}C$ thermal load to coupon-sized mechanical test specimens. Using this device, IM7/5250-4 (carbon / bismaleimide) cross-ply and quasi-isotropic laminates were submerged in liquid nitrogen (L$N_2$) 400 times. Ply-by-Ply micro-crack density, laminate modulus, and laminate strength were measured as a function of thermal cycles. Quasi-isotropic samples of IM7/977-3 (carbon / epoxy) composite were also manually cycled between liquid nitrogen and an oven set at 120 $^{\circ}C$ for 130 cycles to determine whether including elevated temperature in the thermal cycle significantly altered the degree or location of micro-cracking. In response to thermal cycling, both materials micro-cracked extensively in the surface plies followed by sparse cracking of the inner plies. The tensile modulus of the IM7/5250-4 specimens was unaffected by thermal cycling, but the tensile strength of two of the lay-ups decreased by as much as 8.5 %.

  • PDF

Mechanical Properties Analysis of Epoxy and Polyurethane Adhesive for Accurate Structural Analysis of LNG Cargo Hold (LNG 화물창 정밀 구조해석을 위한 에폭시와 폴리우레탄 접착제 기계적 물성치 분석)

  • Jeong, Yong-Cheol;Jeong, Yeon-Jae;Kim, Jeong-Dae;Park, Seong-Bo;Kim, Yong-Tai;Oh, Hoon-Gyu;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.66-72
    • /
    • 2021
  • As the demand for natural gas that satisfies environmental regulations increases, the quantities of natural gas cargo that carrier can load is also increasing. Natural gas is transported in a liquefied state at -163 ℃ to increase loading efficiency. Among several LNG CCS types, MARK-III types are generally adopted in terms of loading efficiency. The secondary barrier adhesives of the MARK-III, nevertheless, is subjected to tensile stress due to thermal contraction and tension in the environment. In terms of these reasons, local analysis of the adhesive to evaluate the stress state must be carried out. According to previous studies, local analysis is unavailable since material properties for secondary barrier adhesives have not been reported. Thus, in this study, the cryogenic tensile test and coefficient of thermal expansion of epoxy and polyurethane (PU15, PU45), which are most widely used at cryogenic temperatures, were experimentally analyzed. At cryogenic temperature, the mechanical behavior of the polyurethane adhesive was better than epoxy of the adhesive. the joint of FSB and epoxy adhesive of the secondary barrier has the maximum coefficient of thermal expansion difference at 25 ℃ and minimum at -150 ℃, respectively.

An Extremely Low Temperature Properties of Austenite Stainless Steels (오스테나이트 스테인리스강의 극저온 특성)

  • Jung, Chan-Hoi;Kim, Soon-Kook;Lee, Jun-Hee;Jeong, Se-Jin;Kim, Ik-Soo
    • Korean Journal of Materials Research
    • /
    • v.17 no.1
    • /
    • pp.37-42
    • /
    • 2007
  • The effects of immersion time in the liquid nitrogen and deformation-induced martensitic transformation on the behavior of austenite stainless steels used for the hydrogen storage tank of auto-mobile at cryogenic temperature were investigated. With increasing of immersion time in the liquid nitrogen, the tensile strength of all austenite stainless steels at cryogenic temperature was increased because the martensite transformation of unstable austenite. The restraint of crack generation ana transmission also increased the tensile strength by the active ${\alpha}'$ transformation. The elongation decreasing of 321 steel is not the mechanical deformation of austenite phase but the stress induced martensite phase during the tensile test.

Hydrogen Embrittlement Properties of Austenitic Fe-30Mn-0.2C(-1.5Al) High-Manganese Steels for Cryogenic Applications (극저온용 오스테나이트계 Fe-30Mn-0.2C(-1.5Al) 고망간강의 수소 취화 특성)

  • Lee, Sang-In;Lee, Ji-Min;Hwang, Byoungchul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.6
    • /
    • pp.283-289
    • /
    • 2018
  • This present study deals with the hydrogen embrittlement properties of austenitic Fe-30Mn-0.2C(-1.5Al) high-manganese steels for cryogenic applications. They were electrochemically charged with hydrogen and then subjected to tensile tests for evaluating hydrogen embrittlement behavior. Tensile test results showed that after hydrogen charging the tensile strength and elongation of the Al-free steel were more remarkably decreased with increasing current density when compared to the Al-added steel. After hydrogen charging of the Al-added steel, it was found that the measured hydrogen content was small and silver particles were relatively less decorated. Therefore, the Al-added steel has a superior hydrogen embrittlement resistance to the Al-free steel because the addition of Al suppresses the injection of hydrogen during electrochemical hydrogen charging.

CRYOGENIC AND ELEVATED TEMPERATURE CYCLING OF CARBON/POLYMER COMPOSITES (탄소/고분자 복합재료의 극저온-고온 싸이클링)

  • Yeh, Byung-Hahn;Won, Yong-Gu
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.38-42
    • /
    • 2002
  • An apparatus was developed to repetitively apply a $-196^{\circ}C$ thermal load to coupon-sized mechanical test specimens. Using this device, IM7/5250-4 (carbon / bismaleimide) cross-ply and quasi-isotropic laminates were submerged in liquid nitrogen ($LN_2$) 400 times. Ply-by-ply micro-crack density, laminate modulus, and laminate strength were measured as a function of thermal cycles. Quasi-isotropic samples of IM7/977-3 (carbon / epoxy) composite were also manually cycled between liquid nitrogen and an oven set at $120^{\circ}C$ for 130 cycles to determine whether including elevated temperature in the thermal cycle significantly altered the degree or location of micro-cracking. In response to thermal cycling, both materials micro-cracked extensively in the surface plies fellowed by sparse cracking of the inner plies. The tensile modulus of the IM7/5250-4 specimens was unaffected by thermal cycling, but the tensile strength of two of the lay-ups decreased by as much as 8.5%.

  • PDF

An experimental study on fatigue performance of cryogenic metallic materials for IMO type B tank

  • Lee, Jin-Sung;You, Won-Hyo;Yoo, Chang-Hyuk;Kim, Kyung-Su;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.580-597
    • /
    • 2013
  • Three materials SUS304, 9% Ni steel and Al 5083-O alloy, which are considered possible candidate for International Maritime Organization (IMO) type B Cargo Containment System, were studied. Monotonic tensile, fatigue, fatigue crack growth rate and Crack Tip Opening Displacement tests were carried out at room, intermediate low ($-100^{\circ}C$) and cryogenic ($-163^{\circ}C$) temperatures. The initial yield and tensile strengths of all materials tended to increase with decreasing temperature, whereas the change in elastic modulus was not as remarkable. The largest and smallest improvement ratio of the initial yield strengths due to a temperature reduction were observed in the SUS304 and Al 5083-O alloy, respectively. The fatigue strengths of the three materials increased with decreasing temperature. The largest increase in fatigue strength was observed in the Al 5083-O alloy, whereas the 9% Ni steel sample showed the smallest increase. In the fatigue crack growth rate test, SUS304 and Al 5083-O alloy showed a decrease in the crack propagation rate, due to decrease in temperature, but no visible improvement in da/dN was observed in the case of 9% Ni steel. In the Crack Tip Opening Displacement (CTOD) test, CTOD values were converted to critical crack length for the comparison with different thickness specimens. The critical crack length tended to decrease in the case of SUS304 and increase for the Al 5083-O alloy with decreasing temperature. In case of 9% Ni steel, change of critical crack length was not observed due to temperature decrease. In addition, the changing material properties according to the temperature of the LNG tank were analyzed according to the international code for the construction and equipment of ships carrying liquefied gases in bulk (IGC code) and the rules of classifications.

Mechanical Characteristics of Stainless Steel under Low Temperature Environment (극저온용 스테인레스 강의 저온거동 특성)

  • Hong, Jin-Han;Keum, Dong-Min;Han, Dae-Suk;Park, In-Bum;Chun, Min-Sung;Ko, Kyung-Wan;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.530-537
    • /
    • 2008
  • Austenitic stainless steels(SUS 304, SUS 316), which are used for safety control valve of LNG carrier, are occasionally exposed in the cryogenic environment. In this regards, it is required to evaluate the mechanical characteristics under the low temperature environment. In this study, a series of uniaxial tensile test was carried out varying temperature for austenitic stainless steel. The phenomena of the strain-induced plasticity have been observed on the all temperature ranges. The critical value for threshold of 2nd hardening due to the phase transformation induced plasticity as well as the increase of hardening have been reported. The summarized experimental results would be used for the validation of numerical techniques applicable for the nonlinear hardening behavior of austenitic stainless steel under the cryogenic temperature environment.

Evaluation of Thermal Performance and Mechanical Properties in the Cryogenic Environment of Basalt Fiber Reinforced Polyurethane Foam (현무암 섬유 보강 폴리우레탄폼의 열적 성능 및 극저온 환경에서의 기계적 특성 평가)

  • Jeon, Sung-Gyu;Kim, Jeong-Dae;Kim, Hee-Tae;Kim, Jeong-Hyeon;Kim, Seul-Kee;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.4
    • /
    • pp.207-213
    • /
    • 2022
  • LNG CCS which is a special type of cargo hold operated at -163℃ for transporting liquefied LNG is composed of a primary barrier, plywood, insulation panel, secondary barrier, and mastic. Currently, glass fiber is used to reinforce polyurethane foam. In this paper, we evaluated the possibility of replacing glass fiber-reinforced polyurethane foam with basalt fiber-reinforced polyurethane foam. We conducted a thermal conductivity test to confirm thermal performance at room temperature. To evaluate the mechanical properties between basalt and glass-fiber-reinforced polyurethane foam which is fiber content of 5 wt% and 10 wt%, tensile and an impact test was performed repeatedly. All of the tests were performed at room temperature and cryogenic temperature(-163℃) in consideration of the temperature gradient in the LNG CCS. As a result of the thermal conductivity test, the insulating performance of glass fiber reinforced polyurethane foam and basalt fiber reinforced polyurethane foam presented similar results. The tensile test results represent that the strength of basalt fiber-reinforced polyurethane foam is superior to glass fiber at room temperature, and there is a clear difference. However, the strength is similar to each other at cryogenic temperatures. In the impact test, the strength of PUR-B5 is the highest, but in common, the strength decreases as the weight ratio of the two fibers increases. In conclusion, basalt fiber-reinforced polyurethane foam has sufficient potential to replace glass fiber-reinforced polyurethane foam.

Effects of Low Temperature on Mechanical Properties of Steel and Ultimate Hull Girder Strength of Commercial Ship (저온환경이 선박 및 해양플랜트용 탄소강재의 재료강도특성 및 상선의 최종 종강도 거동에 미치는 영향)

  • Kim, Do Kyun;Park, Dae Kyeom;Seo, Jung Kwan;Paik, Jeom Kee;Kim, Bong Ju
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.427-432
    • /
    • 2012
  • This paper presents the material properties of carbon steels for ships, and offshore structures (ASTM A131) are tested under a series of arctic and cryogenic temperature conditions. For material tension tests, among the ASTM 131 steels, Grades A and B of mild steel and Grade AH of high tensile steel have been used. The obtained mechanical properties of the materials from the material tension tests were applied in a 13,000TEU class container ship to define the effect of low temperature on the ultimate longitudinal strength of the target structure by using the ALPS/HULL intelligent supersize finite element method. The tensile coupon test results showed increased strength and nonuniform fracture strain behaviors within different grades and temperatures. Increasing the material strength resulted in increasing the ultimate longitudinal strength of the ship.