• Title/Summary/Keyword: Cryo

Search Result 213, Processing Time 0.033 seconds

Comparison of Forcep-biopsy and Cryo-biopsy by a Flexible Bronchoscopy (굴곡성 기관지경을 통한 겸자 생검술과 냉동 생검술의 비교)

  • Kim, Jae Hyun;Choi, Jung Min;Song, Sung Eun;Lee, Eun Mi;Lee, Song Ju;Oak, Chul Ho;Jang, Tae Won;Jung, Man Hong;Jang, Hee Kyung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.66 no.2
    • /
    • pp.110-115
    • /
    • 2009
  • Background: A forceps-biopsy is performed to acquire tissue from patients with an endobronchial carcinoma using a flexible bronchoscope. Recently, a cryo-biopsy has also been used to acquire tissue samples. Cryo-biopsy is the diagnostic application of extreme cold for the local destruction of abnormal living tissue. This technique is safe, with no radiation danger, no risk of electrical accidents, and a little risk of bleeding. This study compared a forceps-biopsy with a cryo-biopsy using a flexible bronchoscope, and examined the chemosensitivity and level of VEGF (vascular endothelial growth factor) in the specimens obtained from the cryo-biopsy. Methods: We present a prospective study of 30 consecutive patients who underwent a forceps-biopsy between January 2007 and October 2007 with a mean age of 62.1 years and a male:female ratio of 5 : 1. A flexible bronchoscope was inserted to the area of the abnormal lesions, and a cryo-probe was then applied through the working channel of the flexible bronchoscope. A temperature of approximately -h80 was delivered to the tumor site for 8 seconds. The cryo-biopsy was performed after destroying the tumor mass. Results: The mean size of the tissue from the forceps-biopsy and cryo-biopsy were 2.0${\pm}$1.2 mm and 6.0${\pm}$3.0 mm. A chemosensitivity test was performed on 5 specimens obtained using cryo-biopsy and the level of VEGF was examined in 2 specimens obtained from a cryo-biopsy. There were no side effects in either group. Conclusion: Cryo-biopsy using a flexible bronchoscope is a safe and effective technique for acquiring tissue samples.

Effects of various freezing containers for vitrification freezing on mouse oogenesis

  • Kim, Ji Chul;Kim, Jae Myeoung;Seo, Byoung Boo
    • Journal of Animal Science and Technology
    • /
    • v.58 no.3
    • /
    • pp.13.1-13.7
    • /
    • 2016
  • Background: In the present study, various freezing containers were tested for mouse embryos of respective developmental stages; embryos were vitrified and then their survival rate and developmental rate were monitored. Mouse two cell, 8 cell, and blastula stage embryos underwent vitrification freezing-thawing and then their recovery rate, survival rate, development rate, and hatching rate were investigated. Methods: EM-grid, OPS, and cryo-loop were utilized for vitrification freezing-thawing of mouse embryos. Results: It was found that recovery rate and survival rate were higher in the group of cryo-loop compared to those of EM-grid (p < 0.05). Embryonic development rate, two cell embryos to blastocyst, as well as hatching rate were higher in the control group compared to the EM-grid group and OPS group (p < 0.05), yet no difference was noted between the control group and cryo-loop group. Development rate and hatching rate of eight cell morulae and blastocysts were all lower in the treatment groups than the control group whilst hatching rate of blastocysts was higher in the control group compared to the groups of EM-grid and OPS (p < 0.05); although the cryo-loop group was shown to be slightly higher than other groups, it was not statistically significant. Conclusions: In the study, we investigate effects of freezing containers on vitrified embryos of respective developmental stages; it was demonstrated that higher developmental rate was shown in more progressed (or developed) embryos with more blastomeres. There was however, no difference in embryonic development rate was shown amongst containers. Taken together, further additional studies are warranted with regards to 1) manipulation techniques of embryos for various vitrification freezing containers and 2) preventive measures against contamination via liquid nitrogen.

Sperm motility and viability of experimental animals using different cryopreservatives

  • Won Yong Park;Byoung Boo Seo
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.38-46
    • /
    • 2023
  • In this study, an experiment was conducted in order to determine what cryopreservatives (CPVs) were more effective in supporting the motility and viability of sperm from experimental animals. The sperm of mice, rats, beagle dogs, and rabbits were frozen using different CPVs, including DMSO, TYB, and Sperm CryoProtec. The results from freezing the sperm of each laboratory animal in Sperm CryoProtec showed a high level of sperm motility and viability in sperm samples from mice, rats, and beagle dogs melted at the end of the first week. For rabbits, a high level of motility was observed in sperm thawed during the first week, whereas a high level of viability was observed in sperm thawed during the second week. The results of analysis of sperm motility and viability using different CPVs according to laboratory animals showed a significantly higher level of sperm motility (26.28%) and viability (36.20%) for mice in Sperm CryoProtec and the lowest levels of motility and viability were observed in DMSO (p < 0.05). Significantly higher levels of motility (27.94%) and viability (37.94%) were observed for rats in Sperm CryoProtec compared with TYB, which showed the lowest levels of motility and viability (p < 0.05). The study findings described above suggest that the selection of appropriate cryopreservatives is required for each experimental animal. This is because there are differences in the levels of sperm motility and viability of experimental animals depending on the CPVs that are typically used for freezing human sperm, including Sperm CryoProtec and TYB.

Relation between Ablation Execution Time and Radiation Exposure Effect in the Treatment of Atrial-fibrillation using Cryo-balloon and 3D Radio-frequency Ablation (냉각 풍선 절제술과 3D 고주파 절제술을 이용한 심방세동 치료 시 절제술 시행 시간과 방사선 피폭 영향과의 연관성)

  • Seo, Young-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.427-434
    • /
    • 2022
  • Atrial fibrillation treatment includes 3D RFCA and Cryo-balloon ablation. Both procedures have in common that they enter after understanding the structure of the heart using angiography equipment. Therefore, there is a disadvantage that the effect of exposure according to the procedure time can be a threat to both the patient and the operator, so this study aims to confirm the relationship between the total ablation time and the effect of radiation exposure. We used follow-up data (retrospective) from 41 patients who underwent coronary angiography and arrhythmia at the same time from March 2019 to July 2022. The range for total ablation time was based on the recorded data from the start to the end of the total ablation. The end point of 3D RFCA was when the ablation was completed for 4 pulmonary veins, and in the case of Cryo-balloon ablation, the data that succeeded in electrical insulation were included. As a result of analyzing the total ablation time, the time taken for Cryo-balloon ablation was 1037.29±103.66 s, which was 2448.61 s faster than 3D RFCA using 3485.9±405.71 s, and was statistically significant. (p<0.05) As a result of analyzing the total fluoroscopy time, the exposure time for 3D RFCA was 2573.75±239.08 s, which was less by 1717.15 s than the exposure time for Cryo-balloon ablation, 4290.9±420.42 s, and was statistically significant. In the case of total area dose product, 3D RFCA was 59.04±13.1 uGy/m2, which was lower than Cryo-balloon ablation 980.6±658.07 uGy/m2 by 921.56 uGy/m2, which was statistically significant. As the insulation time of the Cryo-balloon ablation is shorter than that of the 3D RFCA, the method using the Cryo-balloon ablation is considered to be effective when the patient's condition is not good and a quick procedure is required. However, in patients with permanent Atrial fibrillation, there is a high probability of structural changes in the heart, so it is considered that 3D RFCA is better than Cryo-balloon ablation, which is difficult to manipulate.

Cryo- and Thermo-protective Effects of Enzymatically Synthesized $\beta$-Galactosyl Trehalose Trisaccharide

  • Kim, Bong-Gwan;Ryu, Soo-In;Lee, Soo-Bok
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.199-202
    • /
    • 2008
  • The effects of $\beta$-(1,6)-galactosyl trehalose trisaccharide ($\beta$-GT) that was preferentially produced by Escherichia coli $\beta$-galactosidase on cryo- and thermo-protections of protein were investigated with those of other sugars at the level of 8% (w/v). As compared to a control without sugar additive, $\beta$-GT effectively enhanced 32-54% of the cryoprotection of fish actomyosin against repeated freeze-thawing and frozen storage, and also 49% of the protection against thermal inactivation of pyrophosphatase, respectively. As a result, it was significantly more effective than sorbitol and trehalose in both cryoprotection and thermoprotection. Thus, $\beta$-GT would be possibly applied as a sugar substitute for cryo- and thermo-protective applications of food protein.

High resolution structural analysis of biomolecules using cryo-electron microscopy (초저온 전자현미경법을 통한 고분해능 생물분자 구조분석)

  • Hyun, Jaekyung
    • Vacuum Magazine
    • /
    • v.4 no.4
    • /
    • pp.18-22
    • /
    • 2017
  • Transmission electron microscopy (TEM) is a versatile and powerful technique that enables direct visualization of biological samples of sizes ranging from whole cell to near-atomic resolution details of a protein molecule. Thanks to numerous technical breakthroughs and monumental discoveries, 3D electron microscopy (3DEM) has become an indispensable tool in the field of structural biology. In particular, development of cryo-electron microscopy(cryo-EM) and computational image processing played pivotal role for the determination of 3D structures of complex biological systems at sub-molecular resolution. Here, basis of TEM and 3DEM will be introduced, especially focusing on technical advancements and practical applications. Also, future prospective of constantly evolving 3DEM field will be discussed, with an anticipation of great biological discoveries that were once considered impossible.

Molecular Structure of Muscle Filaments Determined by Electron Microscopy

  • Craig, Roger
    • Applied Microscopy
    • /
    • v.47 no.4
    • /
    • pp.226-232
    • /
    • 2017
  • Electron microscopy and X-ray diffraction have together played a key role in our understanding of the molecular structure and mechanism of contraction of muscle. This review highlights the role of electron microscopy, from early insights into thick and thin filament structure by negative staining, to studies of single myosin molecule structure, and finally to recent high-resolution structures by cryo-electron microscopy. Muscle filaments are designed for movement. Their labile structures thus present challenges to obtaining near-atomic detail, which are also discussed.

Influence of Ceramide III on the Structure of a Phospholipid Lamellar Liquid Crystalline Phase Hydrated in Glycerin : Structural and Thermal Behaviors (Glycerin에 수화된 인지질 라멜라 액정상의 구조에 미치는 Ceramide 3의 영향 : 구조적 및 열적거동)

  • Jeong, Kwan-Young;Lee, Dong-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.603-609
    • /
    • 2010
  • This paper aims to investigate the lyotropic behaviors of DSPC and CER3 when they are swollen by GLY as a solvent. The analyses were carried out on DSC, XRDs, PM, and Cryo-SEM. CER3 which has its high crystallinity and structural similarity with DSPC was well arranged up to 7.0 wt% in comparison to 20 wt% DSPC without any separation, but it was separated from the liquid crystalline (LC) phase to form another crystalline phase with the expression of its characteristic peak in XRDs and eutectic thermal behavior in DSC. Introducing CER3, two types of patterns were shown in XRD spectra; one is SPP expressed in a normal LC and another is LPP expressed in human skin SC. Therefore, it was confirmed that the incorporation of CER3 makes LC structure more similar to human skin. In Cryo-SEM study, it was shown that CER3 makes LC structure thicker and denser.