DOI QR코드

DOI QR Code

Sperm motility and viability of experimental animals using different cryopreservatives

  • Received : 2023.02.22
  • Accepted : 2023.03.20
  • Published : 2023.03.31

Abstract

In this study, an experiment was conducted in order to determine what cryopreservatives (CPVs) were more effective in supporting the motility and viability of sperm from experimental animals. The sperm of mice, rats, beagle dogs, and rabbits were frozen using different CPVs, including DMSO, TYB, and Sperm CryoProtec. The results from freezing the sperm of each laboratory animal in Sperm CryoProtec showed a high level of sperm motility and viability in sperm samples from mice, rats, and beagle dogs melted at the end of the first week. For rabbits, a high level of motility was observed in sperm thawed during the first week, whereas a high level of viability was observed in sperm thawed during the second week. The results of analysis of sperm motility and viability using different CPVs according to laboratory animals showed a significantly higher level of sperm motility (26.28%) and viability (36.20%) for mice in Sperm CryoProtec and the lowest levels of motility and viability were observed in DMSO (p < 0.05). Significantly higher levels of motility (27.94%) and viability (37.94%) were observed for rats in Sperm CryoProtec compared with TYB, which showed the lowest levels of motility and viability (p < 0.05). The study findings described above suggest that the selection of appropriate cryopreservatives is required for each experimental animal. This is because there are differences in the levels of sperm motility and viability of experimental animals depending on the CPVs that are typically used for freezing human sperm, including Sperm CryoProtec and TYB.

Keywords

Acknowledgement

This research was supported by the Daegu University Research Grant, 2018.

References

  1. Ball BA and Vo A. 2001. Osmotic tolerance of equine spermatozoa and the effects of soluble cryoprotectants on equine sperm motility, viability, and mitochondrial membrane potential. J. Androl. 22:1061-1069. https://doi.org/10.1002/j.1939-4640.2001.tb03446.x
  2. Bhattacharya J, Kundu S, Varghese AC, Bhattacharya SM, Bhattacharyya AK, Agarwal A. 2006. A comparative study on TEST-Yolk buffer and human sperm preservation medium on post thaw characteristics of human sperm from prefreeze specimens. Fertil. Steril. 86(3 Suppl):S200.
  3. Blasse AK, Oldenhof H, Ekhlasi-Hundrieser M, Wolkers WF, Sieme H, Bollwein H. 2012. Osmotic tolerance and intracellular ion concentrations of bovine sperm are affected by cryopreservation. Theriogenology 78:1312-1320. https://doi.org/10.1016/j.theriogenology.2012.05.029
  4. Bosch E, De Vos M, Humaidan P. 2020. The future of cryopreservation in assisted reproductive technologies. Front. Endocrinol. (Lausanne) 11:67.
  5. Choi JS, Kim SW, Shin DB, Ko YG, Do YJ, Kim DH, Kong IK, Park SB. 2012. Effects of N-methylacetamide on the viability, fertility and hatchability of cryopreserved Ogye (Korean native black fowl) semen. Korean J. Poult. Sci. 39:291-295. https://doi.org/10.5536/KJPS.2012.39.4.295
  6. Choi WC, Yang MH, Lee YS, Cheong HT, Yang BK, Lee DS, Park CK. 2007. Effect of thawing temperature on sperm characteristics of frozen semen in miniature pig. Reprod. Dev. Biol. 31:175-179.
  7. Critser JK, Huse-Benda AR, Aaker DV, Arneson BW, Ball GD. 1988.Cryopreservation of human spermatozoa. III. The effect of cryoprotectants on motility. Fertil. Steril. 50:314-320. https://doi.org/10.1016/S0015-0282(16)60079-1
  8. Galvao J, Davis B, Tilley M, Normando E, Duchen MR, Cordeiro MF. 2014. Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J. 28:1317-1330. https://doi.org/10.1096/fj.13-235440
  9. Guthrie HD, Liu J, Critser JK. 2002. Osmotic tolerance limits and effects of cryoprotectants on motility of bovine spermatozoa. Biol. Reprod. 67:1811-1816. https://doi.org/10.1095/biolreprod67.6.1811
  10. Hallak J, Sharma RK, Wellstead C, Agarwal A. 2000. Cryopreservation of human spermatozoa: comparison of TEST-yolk buffer and glycerol. Int. J. Fertil. Womens Med. 45:38-42.
  11. Hammadeh ME, Greiner S, Rosenbaum P, Schmidt W. 2001. Comparison between human sperm preservation medium and TEST-yolk buffer on protecting chromatin and morphology integrity of human spermatozoa in fertile and subfertile men after freeze-thawing procedure. J. Androl. 22:1012-1018. https://doi.org/10.1002/j.1939-4640.2001.tb03442.x
  12. Kang HH, Lee JW, Kang MJ, Kim KH, Moon SJ. 2014. In vitro development of porcine oocytes following intracytoplasmic injection of freeze-dried spermatozoa with trehalose. J. Emb. Trans. 29:51-57. https://doi.org/10.12750/JET.2014.29.1.51
  13. Kim H, Yu DJ, Choe C, Seong HH. 2015. Toxic effects of ethylene glycol on mammalian embryo survivability. Reprod. Dev. Biol. 39:77-81. https://doi.org/10.12749/RDB.2015.39.3.77
  14. Kim HJ, Choe JY, Choi SH, Son DS, Choi SH, Sang BD, Han MH, Ryu IS, Kim IC, Kim IH, Im KS, Kim SJ, Cho SR. 2006. Comparison of diluents on liquid storage of Korean native goat spermatozoa. Korean J. Emb. Trans. 21:339-344.
  15. Kwon IK, Park KE, Niwa K. 2004. Activation, pronuclear formation, and development in vitro of pig oocytes following intracytoplasmic injection of freeze-dried spermatozoa. Biol. Reprod. 71:1430-1436. https://doi.org/10.1095/biolreprod.104.031260
  16. Lee YR, Lee SL, Kang TY, Choe SY. 2003. Viability and acrosomal status changes following post-thawing canine spermatozoa. Korean J. Emb. Trans. 18:51-59.
  17. Magnusson V, Feitosa WB, Goissis MD, Yamada C, Tavares LM, D'Avila Assumpcao ME, Visintin JA. 2008. Bovine oocyte vitrification: effect of ethylene glycol concentrations and meiotic stages. Anim. Reprod. Sci. 106:265-273. https://doi.org/10.1016/j.anireprosci.2007.05.001
  18. Mantovani R, Rora A, Falomo ME, Bailoni L, Vincenti L. 2002. Comparison between glycerol and ethylene glycol for the cryopreservation of equine spermatozoa: semen quality assessment with standard analyses and with the hypoosmotic swelling test. Reprod. Nutr. Dev. 42:217-226. https://doi.org/10.1051/rnd:2002020
  19. Masoumi SZ, Parsa P, Darvish N, Mokhtari S, Yavangi M, Roshanaei G. 2015. An epidemiologic survey on the causes of infertility in patients referred to infertility center in Fatemieh Hospital in Hamadan. Iran. J. Reprod. Med. 13:513-516.
  20. McGonagle LS, Goldstein M, Feldschuh J, Foote RH. 2002. The influence of cryoprotective media and processing procedures on motility and migration of frozen-thawed human sperm. Asian J. Androl. 4:137-141.
  21. Mochida K, Hasegawa A, Li MW, Fray MD, Kito S, Vallelunga JM, Lloyd KC, Yoshiki A, Obata Y, Ogura A. 2013. High osmolality vitrification: a new method for the simple and temperature-permissive cryopreservation of mouse embryos. PLoS One 8:e49316.
  22. Moce E, Fajardo AJ, Graham JK. 2016. Human sperm cryopreservation. Eur. Med. J. 1:86-91. https://doi.org/10.33590/emj/10313056
  23. Nakagata N, Mikoda N, Nakao S, Nakatsukasa E, Takeo T. 2020. Establishment of sperm cryopreservation and in vitro fertilisation protocols for rats. Sci. Rep. 10:93.
  24. Seifi-Jamadi A, Ahmad E, Ansari M, Kohram H. 2017. Antioxidant effect of quercetin in an extender containing DMA or glycerol on freezing capacity of goat semen. Cryobiology 75: 15-20. https://doi.org/10.1016/j.cryobiol.2017.03.002
  25. Vanden Meerschaut F, Nikiforaki D, Heindryckx B, De Sutter P. 2014. Assisted oocyte activation following ICSI fertilization failure. Reprod. Biomed. Online 28:560-571. https://doi.org/10.1016/j.rbmo.2014.01.008
  26. Yang KC, Kang HG, Lee HC, Lee HH, Ko DS, Yang H, Park WI, Park EJ, Kim SS. 2004. Toxic effect of cryoprotectants on embryo development in a murine model. Korean J. Fertil. Steril. 31:59-65.