• Title/Summary/Keyword: Crushing effect

Search Result 141, Processing Time 0.022 seconds

Numerical investigation into particle crushing effects on the shear behavior of gravel

  • Xi Li;Yayan Liu;Guoping Qian;Xueqing Liu;Hao Wang;Guoqing Yin
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.209-219
    • /
    • 2023
  • This paper presents numerical investigations into the particle crushing effect on the shear properties of gravel under direct shear condition. A novel particle crushing model was developed based on the octahedral shear stress criterion and fragment replacement method. A series of direct shear tests were carried out on unbreakable particles and breakable particles with different strengths. The evolutions of the particle crushing, shear strength, volumetric strain behavior, and contact force fabric during shearing were analyzed. It was observed that the number of crushed particles increased with the increase of the shear displacement and axial pressure and decreased with the particle strength increasing. Moreover, the shear strength and volume dilatancy were obviously decreased with particle crushing. The shear displacement of particles starting to crush was close to that corresponding to the peak shear stress got. Besides, the shear-hardening behavior was obviously affected by the number of crushed particles. A microanalysis showed that due to particle crushing, the contact forces and anisotropy decreased. The mechanism of the particle crushing effect on the shear strength was further clarified in terms of the particle friction and interlock.

Energy absorption characteristics of diamond core columns under axial crushing loads

  • Azad, Nader Vahdat;Ebrahimi, Saeed
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.605-628
    • /
    • 2016
  • The energy absorption characteristics of diamond core sandwich cylindrical columns under axial crushing process depend greatly on the amount of material which participates in the plastic deformation. Both the single-objective and multi-objective optimizations are performed for columns under axial crushing load with core thickness and helix pitch of the honeycomb core as design variables. Models are optimized by multi-objective particle swarm optimization (MOPSO) algorithm to achieve maximum specific energy absorption (SEA) capacity and minimum peak crushing force (PCF). Results show that optimization improves the energy absorption characteristics with constrained and unconstrained peak crashing load. Also, it is concluded that the aluminum tube has a better energy absorption capability rather than steel tube at a certain peak crushing force. The results justify that the interaction effects between the honeycomb and column walls greatly improve the energy absorption efficiency. A ranking technique for order preference (TOPSIS) is then used to sort the non-dominated solutions by the preference of decision makers. That is, a multi-criteria decision which consists of MOPSO and TOPSIS is presented to find out a compromise solution for decision makers. Furthermore, local and global sensitivity analyses are performed to assess the effect of design variable values on the SEA and PCF functions in design domain. Based on the sensitivity analysis results, it is concluded that for both models, the helix pitch of the honeycomb core has greater effect on the sensitivity of SEA, while, the core thickness has greater effect on the sensitivity of PCF.

A Study on the Parameters Contributing to the Void Crushing in the Cogging Process of Large Forged Products (대형 단조품 코깅 공정의 기공 압착 인자에 대한 연구)

  • Song, M.C.;Kwon, I.K.;Park, Y.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.127-130
    • /
    • 2007
  • Effect of the forging process parameters on the void crushing is the cogging process has been studied in order to find the most effective factor. The Process parameters used for this study are die width ratio, reduction ratio and pre-cooling time before cogging process. Void crushing analysis about the selected process parameters was carried out using FE analysis. The results of FE analysis were evaluated by Taguchi method. It was found that the efficiency of void crushing increases with an increase in the values of all selected process parameters and the principal factor controlling the void crushing was identified as the reduction ratio.

  • PDF

A Study on the Parameters Determining the Void Crushing Ratio in the Cogging Process of Large Forged Products (대형 단조품 코깅 공정의 기공 압착 인자에 대한 연구)

  • Song, M.C.;Kwon, I.K.;Park, Y.G.
    • Transactions of Materials Processing
    • /
    • v.16 no.7
    • /
    • pp.502-508
    • /
    • 2007
  • Effect of the process parameters of the cogging process on the void crushing has been studied in order to identify the most effective factor. The process parameters considered in this study are die width ratio, reduction ratio and pre-cooling time before cogging process. Void crushing analysis with the selected process parameters was carried out using FE analysis. The results of FE analysis were evaluated by Taguchi method. It was found that the efficiency of void crushing increases with an increase in the values of all selected process parameters and the principal factor controlling the void crushing was identified as the reduction ratio.

Effect of grain crushing on 1D compression and 1D creep behavior of sand at high stresses

  • Wang, Z.;Wong, R.C.K.
    • Geomechanics and Engineering
    • /
    • v.2 no.4
    • /
    • pp.303-319
    • /
    • 2010
  • The effect of grain crushing on the deformation of sand in 1D compression and 1D creep at high stresses was investigated theoretically and experimentally. An approach was proposed to formulate the process of grain crushing in sand in accordance with the laws of fracture mechanics and energy conservation. With this approach, the relation between the void ratio and the amount of grains crushed in 1D compression was derived. Laboratory test data were used to verify this derived relation. In addition, it was observed that there are similarities in evolution of grain size distribution in 1D compression and 1D creep tests. This implies that the changes in microstructure in sand under 1D compression and 1D creep are comparable.

A Study on Crushing Characteristic of Hatted Section Tube (모자형 단면부재의 압괴특성 연구)

  • 김천욱;한병기;김병삼
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.212-219
    • /
    • 2002
  • In the frontal collision of cars, front parts of cars such as engine rail and side members that are composed of hatted section tubes should absorb most of the collision energy far the passenger compartment not to be deformed. For these reasons the study on the collapse characteristics, maximum crushing load and energy absorption capacity of hatted section tubes are needed. In this study, top hatted section tubes and double hatted section tubes are investigated. The maximum crushing load of hatted section tubes is induced from plastic buckling stress of plates by considering that the hatted section tubes are composed of plates with each different boundary conditions and that its material has a strain hardening effect. On this concept maximum crushing load equations of hatted section tubes are derived and verified by experiments. from the results of experiment, the differences of collapse characteristics between top hatted section tube and double hatted section tube are analysed. And mean crushing loads of hatted section tubes from experiments are compared with other theory.

Analysis of Measured Vibration Data due to Rock Blasting and Crushing (암반발파 및 파쇄로 인한 진동값 측정과 분석)

  • Moon, Ka-Eun;Rhim, Hong-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.177-178
    • /
    • 2015
  • Various vibration caused by construction vehicles and equipment movement, rock blasting, and crushing obstacle occurs inevitably in construction sites. In this study, we measured the impact of vibration by blasting rock at construction sites, rock crushing, concrete crushing. The measuring instrument was installed in adjacent buildings and observed that blasting vibration differs depending on the charge weight, blasting distance, and the measuring position. The observation was maintained by allowable peak particle velocity standard according to each standards and references.

  • PDF

Effect of Particle Crushing on the Results on DMT in Sand (입자 파쇄가 사질토의 DMT 결과에 미치는 영향)

  • Lee, Moon-Joo;Choi, Young-Min;Kim, Min-Tae;Bae, Kyung-Doo;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.740-746
    • /
    • 2010
  • Most important characteristics of calcareous sand are the particle angularity and hollow structure. These characteristics lead to the different behavior of calcareous sand compared to siliceous sand. This study performs a series of dilatometer test using calibration chamber, in order to analyze the effect of particle characteristic of calcareous sand on DMT indices. From experimental test, it is observed that the horizontal stress index($K_D$) and dilatometer modulus($E_D$) of calcareous Jeju sand is underestimated compared to siliceous sand. This is because the particle crushing during penetration induces the less contraction of the dilatometer membrane. A slightly smaller influence of particle crushing is reflected in $E_D$ rather than $K_D$, because $P_1$ pressure reflects the deformation characteristics of un-crushed particle relatively well. It is also observed that $K_D$ of Jeju sand is differently influenced by the vertical effective stress compared with that of siliceous sand.

  • PDF

Dynamic Effects for Crushing Strength of Rectangular Tubular Members (사각 튜브 부재의 압괴강도에 대한 동적 영향 평가)

  • P.D.C.,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.17-23
    • /
    • 1990
  • When a thin walled member is subjected to compression in a condition such as collision, the energy is mainly absorbed by axial crumpling. In this case, dynamic crushing strength of the member is increased due to the effects of strain-rate compared with the static strength, even though the inertia effect is neglected. In this paper, the method of predicting the static crushing for tubular members is presented using the kinematic method of plasticity. Since, a predicted crushing load, taking account of the dynamic yield stress, usually overestimates the effects of strain-rate, the average plastic flow stress for the effects of strain-rate is used to obtain the dynamic crushing load for tubular members. The analytical results are compared with the experiments published in references, and a good correlation is observed.

  • PDF

A Change of Porewater Pressure under Particle Crushing of Carbonate Sand of Sabkha Layer (Sabkha층 탄산질 모래의 입자파쇄에 따른 간극수압 변화)

  • Kim, Seok-Ju;Yi, Chang-Tok;Ji, Won-Baek;Han, Heui-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.2
    • /
    • pp.19-32
    • /
    • 2014
  • Carbonate sand of Sabkha layer in the middle east was made of deposition of shell fragments and it consisted of porous particles containing inner void. Generally, at yield stress the soil structure begins to break down, so the porewater pressure and the settlement are increased rapidly. In carbonate sand, unlike quartz sand if particle crushing happens, the inner voids are exposed and porewater pressure can be decreased under yield stress. Porewater pressure can be determined as the sum of excess porewater pressure due to increase of relative density, inner void expose of particle under particle crushing stress and rearrangement of crushed particle fragments. The porewater pressure can be negative value in case of greater amount of inner void expose, so if particle crushing is bigger, the porewater pressure value is smaller. The negative value zone of porewater pressure from triaxial test result means particle crushing effect is bigger than outer void decrease effect and the particle crushing effect dominant zone size was 1.50∼3.46% from triaxial test result of Sabkha layer.