• Title/Summary/Keyword: Crush test

Search Result 94, Processing Time 0.022 seconds

Diagnosis and Treatment of Occult Lisfranc Injury (족근 중족 관절 잠재의 손상에 대한 진단 및 치료)

  • Chung, Hyung-Jin;Park, Jae-Gu;Kam, Min-Cheol
    • Journal of Korean Foot and Ankle Society
    • /
    • v.17 no.1
    • /
    • pp.34-39
    • /
    • 2013
  • Purpose: To evaluate the effectiveness of intraoperative stress test for diagnosis of occult Lisfranc injury. Materials and Methods: Between April 2009 and October 2012, 21 patients with occult Lisfranc injuries underwent intraoperative stress test and internal fixation. There were 11 males and 10 females with an average age of 45.3 years (range, 23~79 years). Injuries were caused by traffic accident in 10 cases, indirect force (twisting injury) in 8 cases, and crush in 2 cases, falling from a height in 1 case. Unstable injuries on stress radiograph in occult injury of Lisfranc joint were treated by open reduction or closed reduction and fixation with cannulated screw or K-wire. Radiological evaluation was assessed according to preoperative and postoperative diastasis between $1^{st}$ and $2^{nd}$ metatarsal base. Results: Assoicated injuries were 9 cases of metatarsal fractures, 6 cases of cuneiform fractures and 6 cases of both metatarsal and cuneiform fractures. Medial and middle column fixation was in 13 cases, and three columns fixation was in 8 cases. Initial diastasis between $1^{st}$ and $2^{nd}$ metatarsal base was 2.8 mm (1.3~4.7 mm) on AP radiograph and postoperative diastasis between $1^{st}$ and $2^{nd}$ metatarsal base was 1.2 mm (0.5~2.4 mm) on AP radiograph. Conclusion: Even there is no sign of clear Lisfranc injury, it is necessary to pay attention and give evaluation on circumstances of occult Lisfranc injuries with metatarsal or cuneiform fractures. Intraoperative stress test is helpful to diagnose an occult Lisfranc injury. For unstable injuries on stress radiographs of occult Lisfranc joint injury, operative treatment with open or closed reduction and internal fixation is useful method.

Effects of Specific Exercises on Motor Function Recovery In Rats With Experimental Spinal Cord Injury (척수 손상 쥐에 실시한 특정 과제 운동이 운동 행동에 미치는 영향)

  • Jun, Kyoung-Hee
    • Physical Therapy Korea
    • /
    • v.18 no.1
    • /
    • pp.93-103
    • /
    • 2011
  • This study was implemented to verify the feasibility of motor function recovery and the appropriate period for therapy. The research began with spinal laminectomy of 40 white rats of Sprague-Dawley breed and induced them spinal crush injury. Following results were obtained by using the modified Tarlov test (MTT), Basso, Beattle, Bresnahan locomotor rating scale (EBB scale) and modified inclined plate test (MIPT). First, the measurement using the MTT confirm that the most severe aggravation and degeneration of functions are observed two days after induced injury, and no sign of neuromotor function recovery. Second, better scores were achieved by open-ground movement group on BBB locomotor rating scale test, and weight-bearing on inclined plate group show better performance on MIPT. Third, both BBB and MIPT scale manifested the peak of motor function recovery during 16th day after the injury and turn into gradual recovery gradient during 16th to 24th. Fourth, the control group showed functional recovery, however, the level of recovery was less significant when compared with group open-ground movement group and weight-bearing on inclined plate group. Hence, it was clearly manifested that the lumbar region of the spinal cord had shown the best performance when its functions were measured after the execution of specific physical training; therefore it indicated the possibility of learning specific task even in damaged lumbar regions. Thus it is expected to come out with better and more effective functional recovery if concentrated physical therapy was applied starting 4 days after the injury till 16 days, which is the period of the most active recovery.

Design of the Impact Energy Absorbing Members and Evaluation of the Crashworthiness for Aluminum Intensive Vehicle (알루미늄 초경량 차체의 충격 흡수부재 설계 및 충돌 안전도 평가)

  • Kim, Heon-Young;Kim, Jin-Kook;Heo, Seung-Jin;Kang, Hyuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.216-233
    • /
    • 2002
  • Due to the environmental problems of fuel consumption and vehicle emission, etc., automotive makers are trying to reduce the weight of vehicles. The most effective way to reduce a vehicle weight is to use lighter materials, such as aluminum and plastics. Aluminum Intensive Vehicle(AIV) has many advantages in the aspects of weight reduction, body stiffness and model change. So, most of automotive manufacturers are attempting to develop AIV using Aluminum Space Frame(ASF). The weight of AIV can be generally reduced to about 30% than that of conventional steel vehicle without the loss of impact energy absorbing capability. And the body stiffness of AIV is higher than that of conventional steel monocoque body. In this study, Aluminum Intensive Vehicle is developed and analyzed on the basis of steel monocoque body. The energy absorbing characteristics of aluminum extrusion components are investigated from the test and simulation results. The crush and crash characteristics of AIV based on the FMVSS 208 regulations are evaluated in comparison with steel monocoque. Using these results, the design concepts of the effective energy absorbing members and the design guide line to improve crashworthiness for AIV are suggested.

The Analysis of Cushioning Properties of Corrugated Cushion (골판지를 이용한 완충 포장재의 물리적 특성에 관한 연구)

  • Choi, Seung-Jin;Shin, Joong-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.12 no.1
    • /
    • pp.35-40
    • /
    • 2006
  • Cushioning systems, which are cushion material and its designed configuration, are important to protect fragile items since they act as buffers between the impact force and the fragile product. As cushioning materials, several plastic foams are commonly used in industry. However, the utilization of the plastic material has been causing a solid waste problem and pollution. Thus, as an alternative cushion material to the plastic foams, a corrugated cushion, which is considered environmentally friendly and cheap material, was put into drop tests and its impact shock attenuation was investigated. Flat and free drop data were recorded and compared to the dynamic shock of EPS cushion. In addition, the mathematical model of the shock attenuation of the corrugated cushion was developed. The result showed that the corrugated cushion gave an excellent protection for items that were subjected to the limited number of drops. There was no significant difference of the shock absorbing ability between the EPS and corrugated cushions. Energy density model of cushioning material successfully explained the mechanical behavior and fatigue of the corrugated cushions.

  • PDF

Improvement of Bonding Strength and Water Resistance of Corrugated Board (전분 접착제의 접착 효율 및 골판지의 내수성 향상을 위한 첨가제의 적용)

  • Jang, Dong-Wook;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.1
    • /
    • pp.61-66
    • /
    • 2016
  • In order to improve the bonding efficiency of starch adhesives and water resistance of corrugated board, mixing ratio of additives dosage was changed and its effects were analyzed. When the additives dosage was increased, bonding strength, vertical compression strength, bursting strength and water resistance were increased, because of hydroxyl groups or acetyl groups in starch adhesives and cellulose fibers of corrugated board were cross-linked by additives. When 1.0% glyoxal dosage was added, flat crush strength and vertical compression strength were increased. With 1.5% glyoxal, bonding strength and bursting strength were increased. However, 2.0% glyoxal dosage was added, most of strength except bursting strength were decreased. Thus, when the appropriate amount of additives are added during corrugated board production process, increased bonding efficiency of starch adhesives and higher water resistance of corrugated board can be achieved.

Compressive Strength Reduction Characteristics of Linerboard as Influenced by Temperature and Humidity (온도 및 습도 변화에 따른 라이너원지의 압축강도 열화에 관한 연구)

  • 이준호;김수일;하영선
    • Food Science and Preservation
    • /
    • v.6 no.3
    • /
    • pp.303-307
    • /
    • 1999
  • Compressive strength reduction characteristics of 4 different linerboards(SC, KA, SK and IK) as influenced by temperature and humidity were investigated by ring crush test. No significant effect of temperature on the reduction of compressive strength was found for samples prepared at 5$^{\circ}C$ and 30$^{\circ}C$. At the relative humidity of 66 percents, IK linerboard showed the lowest reduction of the compressive strength. At the relative humidity of 93 percents, KA linerboard lost 40 percents of its initial compressive strength while SK linerboard lost its strength up to 56 percents. The result indicated that KA linerboard was the most cost effective and material with the highest compressive strength among tested linerboards.

  • PDF

A Study on the mechanical Characteristics of Kevlar Plain Weft Knitted Fabrics Reinforced Composites for Development of Intrusion Beam of Car Side Door Application (자동차 사이드 도어용 인트루젼 비임 개발을 위한 케블라섬유강화 복합재료의 기계적 특성에 관한 연구)

  • 이동기
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.89-98
    • /
    • 2000
  • Using conventional textile techniques such as weaving braiding knitting and stitching it is possible to produce a wide range two and three dimensional fiber preforms, however so far only a limited attention has been given to knitted fabrics in composite industry. This is mainly due to the opinion that knitted fabric reinforced composites posses low mechanical properties owing to their looped fiber architecture. But it is possible to obtain desired mechanical properties by selecting proper knitted fabric structure, In this paper mechanical characteristics of kevlar plain weft knitted fabrics reinforced plastics(KFRP) are evaluated for th development of intrusion beam of car side door. Tensile bending impact properties of KFRP are measured experimentally and crush demands of Americal Federal Motor Vehicle Safety Standard No.214(FMVSS 214) compared with the bending load and displacement of KFRP by quasi-static test method. The applicability and limitation of bending load and displacement of KFRP according to specimen size has been discussed.

  • PDF

Experimental Investigation for Flexural Stiffness of Paperboard-stacked Structure

  • Lee, Myung-Hoon;Park, Jong-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.7 no.1
    • /
    • pp.9-15
    • /
    • 2001
  • Top-to-bottom compression strength of corrugated fiberboard boxes is partly dependent on the load-carrying ability of the central panel areas. The ability of these central areas to resist bending under load will increase the stacking strength of the box. The difference of box compression strengths, among boxes which are made with identical dimensions and fabricated with same components but different flute sizes, is primarily due to difference of the flexural stiffness of the box panels. Top-to-bottom compression strength of a box is accurately predicted by flexural stiffness measurements and the edge crush test of the combined boards. This study was carried out to analyze the flexural stiffness, maximum bending force and maximum deflection for various corrugated fiberboards by experimental investigation. There were significant differences between the machine direction (MD) and the cross-machine direction (CD) of corrugated fiberboards tested. It was about 50% in SW and DW, and $62%{\sim}74%$ in dual-medium corrugated fiberboards(e.g. DM, DMA and DMB), respectively. There were no significant differences of maximum deflection in machine direction among the tested fiberboards but, in cross direction, DM showed the highest value and followed by SW, DMA, DMB and DW in order. For the corrugated fiberboards tested, flexural stiffness in machine direction is about $29%{\sim}48%$ larger than cross direction, and difference of flexural stiffness between the two direction is the lowest in DMA and DMB.

  • PDF

Design of Auto Shifting Logic and Shifting Map for AMT (자동화 수동변속기용 자동변속로직 및 변속맵 설계)

  • Im, Jin-Kang;Lee, Dong-Kun;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.670-671
    • /
    • 2016
  • AMT(Automated Manual Transmission) is manual transmission that can shift gear automatically by actuator. AMT is applied many commercial vehicles, for easy to operate and high fuel efficiency. 12-Steps AMT that is applied heavy duty commercial vehicle determine gear shifting point by using shifting map and auto shifting logic like other common auto transmissions. But shifting 1-step like common auto transmissions makes shifting crush, clutch abrasion, decrease fuel efficiency problems. In this paper, it deals with design of shifting map and auto shifting logic for 12-step AMT and result of performance test.

  • PDF

Vibration and Noise Analysis According to Blasting Method (발파공법에 따른 진동 및 소음 분석)

  • Kim, Min-Hyouck
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.150-151
    • /
    • 2022
  • Blasting is a method that uses explosives to crush the ground. This method is a highly efficient ground cleaning method that can secure high efficiency in a short time. However, explosions can damage local properties and produce high noise and vibration. Therefore, it is important to be careful because there are disadvantages such as the occurrence of many complaints from the surrounding area. In this paper measured and analyzed the noise and vibration generated during blasting at the blasting site in Korea. The noise and vibration generated during blasting were measured by ES03303.2b and ES03402.2a at a distance of 6 m, 12 m from the blasting point. As a result of the measurement, there was little difference between small and medium scale except for precision vibration blasting at a distance of 6m, but noise difference according to blasting scale was evident at a distance of 12m. As a result of the measurement, the maximum noise level was reduced to 5.5 dB(A) and the vibration level was reduced to 7.7 dB(V). In the future, the reliability of the test results can be further improved through additional tests, and it is judged that noise and vibration prediction models based on blasting methods, amount of charge, measuring distance, etc. can be developed.

  • PDF