• Title/Summary/Keyword: Cruise Control System

Search Result 162, Processing Time 0.028 seconds

A Study on Flight Characteristics and Flight Control Methodology for a Wing In Ground Effect Vehicle (지면효과익기의 비행특성 해석 및 비행제어 방식에 관한 연구)

  • Song, Yongkyu
    • Journal of Advanced Navigation Technology
    • /
    • v.5 no.1
    • /
    • pp.19-25
    • /
    • 2001
  • In this study an analysis on flight characteristics and flight control methods for a wing in ground effect vehicle is made. In order to closely view its nonlinearity a few limit cycles are examined and related to the characteristics of the linearized systems. Several flight control methods are compared for the cruise mode with initial height error and command tracking mode of ascending, cruise, and descending. In comparison performance and the implementation aspects are examined. For the possible control inputs, combinations of elevator, thrust, and flap are considered and LQR-based output command tracking scheme is applied in the control system design.

  • PDF

An Implementation of Monitoring System of Vehicle Using CAN Communication and Embedded System (Controller Area Network (CAN) 통신과 임베디드 시스템을 이용한 자동차 감시 시스템 구현)

  • Yang, Seung-Hyun;Lee, Seok-Won
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2690-2692
    • /
    • 2005
  • CAN communication can minimize the interfacing lines between equipments because it is composed of only the input and output lines, also is used for automatic system including vehicle, aircraft, railway vehicles and robot because the reliability of data is high by the capability of data-related error detect and correcting function. It can also improve the low-reliable and inefficient system which is composed of the existing Wiring Harness(W/H), so in case of vehicle, it is used in place of the present ECU as the new electro-control unit. In this paper, we constructed the electro-control unit of vehicle by using CAN communication and implemented system that could monitor the condition of vehicle through the web or mobile by connecting the electro-control unit to imbedded system. Such a system is expected to be helpful to the intelligent vehicle and the adoption of ACC(Adaptive Cruise Control).

  • PDF

Development and Validation of Automatic Thrust Control System (자동추력 제어시스템 개발 및 검증)

  • Kim, Chong-Sup;Cho, In-Je;Lee, Dong-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.905-912
    • /
    • 2010
  • Modern version of advanced supersonic fighter have ATCS (Automatic Thrust Control System) to maximum flight safety, fuel efficiency and mission capability the integrated advanced autopilot system such as TFS (Terrain Following System), GCAS (Ground Collision Avoidance System) and AARS (Automatic Attitude Recovery System) and etc. This paper addresses the design and verification of ATCS based on advanced supersonic trainer in HILS (Hardware In the Loop Simulator) with minimum hardware modification to reduce of development cost and maintain of system reliability. The function of ATCS is consisted of target speed hold mode in UA (Up and Away) and angle of attack hold mode in PA (Power Approach). The real-time pilot evaluation reveals that pilot workload is minimized in cruise and approach flight stage by ATCS.

Methodology for Evaluating the Effectiveness of Integrated Advanced Driver Assistant Systems (In-vehicle 통합 운전자지원시스템 효과평가 방법론 개발 및 적용)

  • Jeong, Eunbi;Oh, Cheol;Jung, Soyoung
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.4
    • /
    • pp.293-302
    • /
    • 2014
  • Recently, advanced sensors and communication technologies have been widely applied to advanced safety vehicles for reducing traffic accidents and injury severity. To apply the advanced safety vehicle technologies, it is important to quantify safety benefits, which is a fundamental for justifying application. This study proposed a methodology for quantifying the effectiveness of the Advanced Driver Assistant System (ADAS) with the Analytic Hierarchy Process (AHP). When the proposed methodology is applied to 2008-2010 Gyeonggi-province crash data, ADAS would reduce about 10.18% of crashes. In addition, Adaptive Cruise Control, Automatic Emergency Braking System, Lane Departure Warning System and Blind Spot Detection System are expected to reduce about 10.43%, 10.17%, 9.96%, and 10.18%, respectively. The outcomes of this study might support decision making for developing not only vehicular technologies but also relevant safety policies.

Vehicle-Tracking with Distorted Measurement via Fuzzy Interacting Multiple Model (Fuzzy Interacting Multiple Model을 이용한 관측왜곡 시스템의 차량추적)

  • Park, Seong-Keun;Hwang, Jae-Pil;Rou, Kyung-Jin;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.863-870
    • /
    • 2008
  • In this paper, a new filtering scheme for vehicle tracking with distorted measurement is presented. This filtering scheme is essential for the implementation of the adaptive cruise control (ACC) system. The proposed method combines the IMM and the probabilistic fuzzy model and is named as the Fuzzy IMM (FIMM). The IMM is employed to recognize the intention of the preceding vehicle. The probabilistic furry model is introduced to compensate the distortion of the range sensor. Finally, a computer simulation is performed to illustrate the validity of the suggested algorithms.

Interacting Multiple Model Vehicle-Tracking System Based on Neural Network (신경회로망을 이용한 다중모델 차량추적 시스템)

  • Hwang, Jae-Pil;Park, Seong-Keun;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.641-647
    • /
    • 2009
  • In this paper, a new filtering scheme for adaptive cruise control (ACC) system is presented. In the proposed scheme, the identification of the mode of the preceding vehicle is considered as a classification problem and it is done by a neural network classifier. The neural network classifier outputs a posterior probability of the mode of the preceding vehicle and the probability is directly used in the IMM framework. Finally, ten scenarios are made and the proposed NIMM is tested on them to show its validity.

Effect of Alternator Control on Vehicle Fuel Economy (교류발전기 충전 제어에 따른 차량연비 개선 효과)

  • Cho, Guen-Jin;Wi, Hyo-Seong;Lee, Jong-Hwa;Park, Jin-Il;Park, Kyoung-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.20-25
    • /
    • 2009
  • For many years there has been a trend to increased electrical energy consumption in cars caused by the replacement of mechanical parts by electronic or mechanical devices as well as the introduction of new electronic features. Whereas the number of electrical consumers continues to increase, the battery is still the only passive power source available. Because of this reason, needs for driving power of the engine accessories such as alternator system have increased. Usually, conventional alternator system is directly driven by the crankshaft of engine with belt. Since this increase bring about additional fuel economy. To improve this system automobile makers develops new controled alternator system. This paper focuses on fuel economy improvement according to control of alternator. In this paper, researches are performed on effect of type of Alternator system on fuel economy by experiment. And it is also calculated the effect on vehicle fuel economy using computer simulation with AVL cruise software. As a result, 0.64% of vehicle fuel economy improvement can be achieved in a vehicle with controled Alternator system compared to a vehicle with conventional Alternator system in NEDC mode.

Development of an Intelligent Autonomous Control Algorithm and Test Vehicle Performance Verification (지능형 자율주행 제어 알고리즘 개발 및 시험차량 성능평가)

  • Kim, Won-Gun;Yi, Kyong-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.861-866
    • /
    • 2007
  • This paper presents development of a vehicle lateral and longitudinal control for autonomous driving control and test results obtained using an electric vehicle. Sliding control theory has been used to develop a vehicle speed and distance control algorithm. The longitudinal control algorithm that maintains safety and comfort of the vehicle consists of a cruise and STOP&GO control depending on traffic conditions. Desired steering angle is determined through the lateral position error and the yaw angle error based on preview optimal control. Motor control inputs have been directly derived from the sliding control law. The performance of the autonomous driving control which is integrated with a lateral and longitudinal control is investigated by computer simulations and driving test using an electric vehicle. Electric vehicle system consists of DC driving motor, an electric power steering system, main controller (Autobox)

  • PDF

Study for Evaluation Standard of Longitudinal Active Safety System (종방향 능동안전장치의 평가기준 연구)

  • Jang, Hyunik;Yong, Boojoong;Cho, Seongwoo;Choi, Inseong;Min, Kyongchan;Kim, Gyuhyun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.4 no.1
    • /
    • pp.12-17
    • /
    • 2012
  • ADAS(Advanced Driver Assistance System) which is developed for alleviating driver's load has become improved with extending it's role. Previously, ADAS offered simple function just to make driver's convenience. However, nowadays ADAS also acts as Active Safety system which is made to release and/or prevent accidents. Longitudinal control system, as one of major parts of Active Safety System, is assessed as doing direct effect on avoiding accidents. Therefore, many countries such as Europe and America has pushed longitudinal control system as a government-wide project. In this paper, it covers the result of evaluation system and vehicle evaluation for development study in FCW, ACC and AEB.

Analysis of Active Safety System and UWB Radar Technology for Vehicle (이동 객체용 능동 안전시스템 및 UWB 레이더 기술 분석)

  • Kim, Sang-Dong;Lee, Jong-Hun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.3
    • /
    • pp.167-174
    • /
    • 2008
  • This paper presents the technology trend of various active safety systems for vehicle. The safety system is applied to various industry fields and is expected to be spread all over the market. So far, good examples of the developed active safety systems are ACC(Adaptive Cruise Control), CMS(Collision Mitigation Systems) and APSS(Active Pedestrian Safety Systems). And, a basic operation principle, system model and detection performance in a UWB radar for vehicle is investigated.

  • PDF