• Title/Summary/Keyword: Crude oil tanker

Search Result 40, Processing Time 0.028 seconds

Polycyclic Aromatic Hydrocarbons Hazard Assessment of Shellfish due to Oil Spill Accidents (유류 유출 사고 해역에 서식하는 패류의 다환방향족탄화수소(PAHs) 위해도 평가)

  • Kim, Poong-Ho;Kim, Min-Jeong;Jo, Mi-Ra;Lee, Doo-Seog;Song, Ki-Cheol;Byun, Han-Seok;Cho, Kee-Chae;Park, Kwang-Jae;Jun, Je-Cheon;Yoon, Ho-Dong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.3
    • /
    • pp.211-216
    • /
    • 2010
  • On 7 December 2007, about 12,547 kL of crude oil spilled from the Hong Kong registered tanker Hebei Spirit along the west coast of the Republic of Korea, including Taean-gun, Chungcheongnamdo Province. This study evaluated the safety of seafood collected from the coastal area polluted by the crude oil. The range of total polycyclic aromatic hydrocarbons (${\sum}PAHs$) at 22 stations was 3.9-37.1 ng/g. The concentration of ${\sum}PAHs$ was higher in oysters, Crassoatrea gias, than that in short-necked clams, Ruditapes philippinarum. Benzo(a)pyrene, a highly toxic PAH, ranged from 0.07-1.47 ng/g, which did not exceed the European Union regulatory limit for benzo(a)pyrene. The toxicity equivalent of benzo(a)pyrene in oysters and short-necked clams was 0.49-1.70 and 0.09-1.01 ng/g, respectively. The estimated life time cancer risk was very low, i.e., $1.31{\times}10^{-8}$ for the oysters and $6.9{\times}10^{-9}$ for the short-necked clams. The body burden of PAHs in bivalves originated mostly from petroleum contamination, but the levels was not sufficiently high to harm human health.

A Study on Development of Movable Mariculture System by Use of Deep Sea Water (I) (해양심층수 이용형 이동식 해상양식시스템 개발 (I))

  • Kim, Hyeon-Ju;Jung, Dong-Ho;Choi, Hark-Sun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.329-332
    • /
    • 2003
  • Aquaculture have been important role to supply food resources for mankind. However, competitive power of domestic mariculture industry was declined due to increase of labor and feed expenditures, and quantity import of low-priced livefishes from the developing underdeveloped nations in North and South East Asia. Mass production and quality enhancement can be pointed out to overcome such an industrial environment in this decade. To meet these requirement, movable mariculture base remodeling feasible vessel of chemical tanker or crude oil carrier has been proposed for more advanced mariculture management system by using deep seawater from about 200m which is sustainablely clean, nutrient-rich and cold seawater. Deep seawater can be applied for control of seawater temperature for mariculture base and cultivation phytoplankton and seaweed as feed. Besides mariculture, strategic marketing can be implemented by raw water and ice of deep seawater. Feasibility of applying deep seawater was considered after evaluating general movable mariculture base and management system.

  • PDF

A Study on Size Optimization of the Big Bracket in the Cargo Hold of Crude Oil Tanker (유조선 화물창내 대형 브라켓 치수 최적화 연구)

  • Lee Jong Hwan;Shin Sang Hoon;Kim Doehyun;Hwon Jin Chil
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.63-68
    • /
    • 2005
  • Optimum design of the big brackets is performed through iterated 3-D FE analyses to meet the permissible limits of stress, which consumes an excessive amount of calculation time. Therefore, this study has been prepared to determine rapidly and accurately an optimum size and scantling of the big brackets at the initial design stage. The generalized slope deflection method (GSDM) based on the span point concept is applied to enhance the efficiency of iterated structural analyses. The accuracy and applicability of the present method is verified by comparing with a detail 3-D FE analysis of web frame structures. As an optimization technique, evolution strategies (ES) are applied using discrete design variables for practical design.

  • PDF

Experimental Study on Added Resistance of VLCC for Ship's Operating Condition in Waves

  • Lee, Sang-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.3
    • /
    • pp.240-245
    • /
    • 2015
  • In this study, experiments were performed using a model of a very large crude oil carrier (VLCC), which is a typical blunt ship, in a wave-making towing tank. The aim of the experiments was to determine the effect of added resistance in waves on the various operating conditions of a VLCC. An analysis of the results was conducted to determine the characteristics of resistance performance in waves. In addition, the characteristics of added resistance on a tanker were analyzed under irregular waves based upon the above result. The experimental results showed that added resistance was the highest around ${\lambda}/L=1.0$, and the added resistance increased with the increase of the ship speed. Furthermore, under even keel conditions, the added resistance was higher than that under the trim changes, and the smallest added resistance was measured at the trim by the stern. Based on the experimental results, this study proposes effective operating conditions by analyzing the characteristics of the mean added resistance and the expected extreme response in irregular waves.

An Analysis and Visualization System for Ship Structural Intensity Using a General Purpose FEA Program (범용 유한요소해석 프로그램을 이용한 선박 진동인텐시티 해석 및 가시화 시스템)

  • Kim, Byung-Hee;Yi, Myung-Seok;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.487-492
    • /
    • 2005
  • The structural intensity analysis, which calculates vibration energy flow from vibratory velocity and internal force of a structure, can give information on sources' power, dominant transmission path and sink of vibration energy. In this study, we present a system for structural intensity analysis and visualization to apply for anti-vibration design of ship structures. The system calculates structural intensity from the results of forced vibration analysis and visualize the intensity using a general purpose finite element analysis program MSC/Nastran and its pre- and post-processor program. To demonstrate the analysis and visualization capability of the presented system, we show and discuss the results of structural intensity analysis for a cross-stiffened plate and a 70,500 OW crude oil tanker

Reduction of UKC for Very Large Tanker and Container Ship in Shallow Water

  • Lee, Sang-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.3
    • /
    • pp.409-420
    • /
    • 2021
  • The decrease in under keel clearance (UKC) due to the increase of draft that occurs during advancing and turning of very large vessels of different types was analyzed based on computational fluid dynamics (CFD). The trim change in the Duisburg test case (DTC) container ship was much smaller than that of the KRISO very large crude oil carrier 2 (KVLCC2). The sinkage of both ships increased gradually as the water depth became shallower. The amount of sinkage change in DTC was greater than that in KVLCC2. The maximum heel angle was much larger for DTC than for KVLCC2. Both ships showed outward heel angles up to medium-deep water. However, when the water depth became shallow, an inward heel was generated by the shallow water effect. The inward heel increased rapidly in very shallow water. For DTC, the reduction ratio was very large at very shallow water. DTC appeared to be larger than KVLCC2 in terms of the decreased UKC because of shallow water in advancing and turning. In this study, a new result was derived showing that a ship turning in a steady state due to the influence of shallow water can incline inward, which is the turning direction.

A Study on the Structural Characteristics and Shape of Outfitting Equipment Support in a 300K DWT Crude Oil Tanker

  • Jeong, Kwang-Woon;Chung, Han-Shik;Jeong, Hyo-Min;Ji, Myoung-Kuk;Kim, Jeong-Tae
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.180-185
    • /
    • 2014
  • Due to the larger and high-speed vessels recently constructed, output and speed of the engines for propulsion or power generation is increasing. These high-power and high-speed engine of the ship is becoming as a major contributor causing excessive noise and vibration. Other fittings as well as equipment installed on board, it makes equipment failure or other defect by resonance. This causes a lot of M/H(Man Hour) for repairs and the reliability of the company is invading even be negative because the clients give much comment. Thus, it's being studied for any fittings installed on board to maintain the safe operation and to prevent any problem during the performance in any operating conditions. In this study, it was investigated to solve these problems for the supports of the various fittings for easy installation-related support that each type of intensity and shape and manufacturing method using structural analysis program(DNV Nauticus Hull 3D Beam). Namely, it would be applied to the very large crude carriers in consideration of mechanics of materials of the support equipment by providing the fact that dynamics analysis of the structural characteristics of the equipment and the support of the production installation is easy and productivity can be high standards for geometry and thereby to simplify the analysis task to design changes at the same time and to minimize the reinforcement for the supports.

Experimental Results of Ship-To-Ship Lightering Operations Applied Velocity Information GPS

  • Yoo, Yun-Ja;Pedersen, Egil;Kouguchi, Nobuyoshi;Song, Chae-Uk
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.577-583
    • /
    • 2014
  • A ship-to-ship (STS) lightering operation takes place in order to transfer cargo (e.g. crude oil or petroleum products) between an ocean-going ship and a service ship alongside it. Instrumental measurements to accurately determine the relative speeds and distances during the approach between the vessels would benefit the operational safety and efficiency. A velocity information GPS (VI-GPS) system, which uses the instantaneous velocity measures from carrier-phase Doppler measurement, has been applied in a field observation onboard a service ship (Aframax tanker) approaching a ship-to-be-lightered (VLCC) in open waters. This article proposes to apply VI-GPS as the input sensor to a guidance and decision-support system aiming to provide accurate velocity information to the officer in charge of an STS operation. A method for precise velocity measurement using VI-GPS was described and the measurement results were compared each other with the results of Voyage Data Recorder (VDR) and VI-GPS that showed the concept of a guidance and decision-support system applying VI-GPS with the field test results during STS operations. Also, it turned out that VI-GPS has sufficient accuracy to serve as an input sensor from the field test results.

Structural Strength and Fatigue Strength Assessment for Fore/Aft Cargo Hold of 60m Beam VLCC (60m Beam VLCC Fore/Aft Cargo Hold에 대한 구조 안정성 및 피로강도 평가)

  • Lee Sang-Woo;Choi J.H.;Kim M.S.;Kim M.S.;Lee Y.M.;Kim K.S.
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.84-89
    • /
    • 2005
  • The double hull VLCC(Very Large Crude Oil Tanker) have been designed to have each four(4) longitudinal bulkheads and transverse bulkheads in general. Actually, the inside longitudinal bulkheads among four(4) longitudinal bulkheads, which are extended up to the end of the aft cargo hold for continuity of the members, have been designed with knuckled type inboard due to the narrowed hull shape at bottom region, but sometimes the straight type of longitudinal bulkheads were adopted based on the degree of the hull lines shape. However, regardless the type of longitudinal bulkheads, inside and outside longitudinal bulkheads conflict each other in aft cargo hold region This makes the structure more complex thus giving difficulties to structural design and production. Recently, a vessel of straight type was reported to have cracks on bracket end and tripping bracket toe in aft cargo hold region. As a solution to this problem, in designing the first 60m Beam VLCC, DSME developed a new cargo hold structure which is good in production and structural point of view by structural strength and fatigue analysis of fore and aft cargo hold.

  • PDF

Case Study on the Bogie Arrangement of the Load-out System for On-ground Shipbuilding (선박 육상건조를 위한 로드-아웃 시스템의 보기 배치 사례 연구)

  • Hwang, John-Kyu;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.153-160
    • /
    • 2022
  • This study presents the bogie arrangement of the load-out system for on-ground shipbuilding. The load-out system is one of the most important systems to perform the bogie arrangement of the on-ground shipbuilding technique without dry dock facilities, and this system is composed of four pieces of equipment: bogies, driving bogie with motors, trestles, and power packs. Also, the bogie arrangement analysis (BAA) is employed to simply calculate the reaction forces at the trestle for structural safety. In this context, the purpose of this study is to propose an optimal design method to perform the bogie arrangement satisfying structural safety requirements with minimal cost. It is expected that the proposed methodology will contribute to the effective practice as well as to the improvement of competitive capability for shipbuilding companies at the on-ground shipbuilding stage. Furthermore, we describe some problems and their solutions of the deformation that may occur in the bottom of the hull during the load-out process. As a result, it is shown that we applied it to the 114K crude oil tanker (Minimum bogie 54EA) and the 174K CBM LNG carrier (Minimum bogie 88EA), it can minimize the number of bogie and critical risks (Safety rate 1.61) during the load-out of on-ground shipbuilding. Through this study, the reader will be able to learn successful load-out operation and economic shipbuilding in the future.