• 제목/요약/키워드: Crucible Size

검색결과 52건 처리시간 0.024초

대기용해 시 내화물 도가니의 종류가 가돌리늄(Gadolinium)을 함유한 듀플렉스 스테인레스 강의 미세조직에 미치는 영향 (The Effect of Refractory Crucible on Microstructure of Duplex Stainless Steel Cast with Gadolinium during Air Induction Melting)

  • 안지호;임재한;문병문
    • 한국주조공학회지
    • /
    • 제35권5호
    • /
    • pp.114-119
    • /
    • 2015
  • This paper reports the effect of a refractory crucible type on the microstructure of duplex stainless steel (DSS) cast with the addition of gadolinium using air-induction melting. Grade 4A DSSs with 1 wt% of gadolinium (Gd) were fabricated in various crucibles including alumina ($Al_2O_3$), magnesia (MgO), calcia (CaO) coated with yttria ($Y_2O_3$) and graphite. The standard free energies of the formation of calcium and yttrium oxide were lower than those of gadolinium oxide and other crucible elements based oxide. The yield of Gd in DSS using $Al_2O_3$, MgO, CaO-coated $Y_2O_3$ and graphite was 5, 19, 83 and 96%, respectively. As Gd yield increased, the amount of Gd-based inclusions increased, the size of the inclusions were reduced, and the inclusions became evenly distributed.

$PbO-B_2O_3$ 플럭스에 의해 성장한 루비단결정의 특성평가 (Characterization of ruby single crystal grown by $PbO-B_2O_3$ flux)

  • 조민희;서진교;안용길;박종완
    • 한국결정성장학회지
    • /
    • 제19권4호
    • /
    • pp.165-171
    • /
    • 2009
  • 기존의 합성방법에 사용되는 백금 도가니의 단점을 보완할 수 있는 알루미나 도가니를 사용하여 천연 및 기존의 합성루비와 유사한 적색의 투명한 결정을 성장시켰다. $PbO-B_2O_3$ 가 흔합된 플럭스를 사용하여 $915{\sim}1350^{\circ}C$의 온도에서 약 240시간 실험 후 최대 9.02 ${\times}$ 6.36 mm 투명한 적색의 결정이 성장되었다. 이 결정을 보석학적 기초검사를 통하여 굴절률, 내포물, 비중 등의 특성과 FT-IR, UV-VIS spectrometer 및 XRD 를 사용하여 기존의 합성루비 및 천연루비의 특성과 비교분석하였다.

AlN 단결정 성장에 관한 도가니 형태의 의존성에 관한 연구 (A study on the dependance of crucible dimension on AlN single crystal growth)

  • 인경필;강승민
    • 한국결정성장학회지
    • /
    • 제25권1호
    • /
    • pp.1-5
    • /
    • 2015
  • AlN 단결정의 특별한 용도로 이를 개발하기 위한 노력이 전 세계적으로 매우 활발하게 이루어지고 있다. 이러한 AlN을 기반으로 하는 자외선 LED는 생활, 의학, 자동자 등에 유용한 용도로서 살균, 정화, 경화 및 분석 등 분야에 이용된다. 이에 실험을 통해 PVT법으로 카본 도가니를 사용하여 AlN 단결정을 성장시켰으며 실험 중 3가지 형태의 도가니를 이용하여 성장에 미치는 영향을 분석하였으며, 그 온도 조건은 $1900{\sim}2100^{\circ}C$이고 실험 압력으로는 1~200 Torr였다. 그 결과, 높이가 높은 형태의 도가니를 사용할 경우 증발량은 기준 형태보다 증가 하는데 그쳤다. 반면, 넓은 형태의 도가니는 더욱 많은 증발양의 증가를 보였으며, 기준 형태에 비하여 훨씬 안정하다는 것을 알았다. 또한, 제한된 크기의 도가니를 이용한 PVT법에서의 도가니 형태의 변화에 따른 결과는 성장률에 따른 최적 조건, 성장 결정의 품질변화 및 성장 조건 안정성에 영향을 주는 것을 알았다.

CCM용융에 대한 유리용융 조건 연구 (The Study on the Power Consumption for Glass Melting by Cold Crucible Melter)

  • 진현주;이규호;장영재;배소영;김태호;정영준;김영석;이강택;류봉기
    • 대한금속재료학회지
    • /
    • 제46권2호
    • /
    • pp.65-68
    • /
    • 2008
  • Generally CCM (cold crucible melting) is not suitable for melting glass. However, in this study we described the quantitative relationship between the basic property of glass and power balance, the power absorption in the melt, the losses in the coil and the cold crucible, for melting glass in CCM. The dependence of power balance on the applied frequency and the electric conductivity has been found. Above 300 kHz, the glass (B) contained alkali ion which has the low resistance $3.0{\Omega}{\cdot}cm$ at $900^{\circ}C$ and $1.36{\Omega}{\cdot}cm$ at $1,100^{\circ}C$ was melted easily and 60% of the overall power was absorbed in the melt and 30% and 10% of the overall power was lost in the cold crucible and coil respectively. Under the same condition, the glass (A) contained non-alkali ion was not melted easily and 50% of the overall power was absorbed in the melt and 40% and 10% of the overall power was lost in the cold crucible and coil respectively. In conclusion, the small absorbed power of the overall power in melt prevented a successful melting as for glass A, and the successful melting depends on the relative size of the absorbed power in melt irrespective of the melting volume. Hence, as typical for direct induction heating method(CCM), the successful melting strongly depended on the chosen working frequency based on electric conductivity of glass, power balance and the control of the critical power which was absorbed in melt.

쵸크랄스키법에서 온도 프로파일에 대한 충진사이즈의 효과에 대한 이해 (Understanding of the effect of charge size to temperature profile in the Czochralski method)

  • 백성선;권세진;김광훈
    • 한국결정성장학회지
    • /
    • 제28권4호
    • /
    • pp.141-147
    • /
    • 2018
  • 태양광 에너지는 깨끗하며 무한한 재생에너지의 한가지로 많은 관심을 받아왔다. 태양광 에너지는 다결정 실리콘 웨이퍼 혹은 단결정 실리콘 웨이퍼로 구성된 솔라셀에 의해서 전기에너지로 전환된다. 제조원가를 낮추기 위하여 한 개의 석영 도가니에 폴리실리콘의 충진 크기를 증가시키는 연구가 많이 개발되어 왔다. 충진 크기를 증가시키면, 쵸크랄스키 공정장비의 온도제어가 강한 멜트 대류 때문에 힘들어진다. 본 연구에서는 20 inch와 24 inch 석영도가니와 90 Kg, 120 Kg, 150 Kg, 200 Kg, 250 Kg의 다양한 폴리실리콘 충진 크기에서 시뮬레이션을 통해 장비 온도 프로파일을 얻었으며, 실제값과 비교하고 분석하였다. 시뮬레이션 온도 프로파일과 실제 온도프로파일이 잘 일치하였으며, 이로써 충진 사이즈가 증가할 경우, 실제온도 프로파일 최적화를 위해 시뮬레이션을 사용할 수 있게 되었다.

The intrinsic instabilities of fluid flow occured in the melt of Czochralski crystal growth system

  • Yi, Kyung-Woo;Koichi Kakimoto;Minoru Eguchi;Taketoshi Hibiya
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1996년도 The 9th KACG Technical Annual Meeting and the 3rd Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.179-200
    • /
    • 1996
  • The intrinsic instabilities of fluid flow occurred in the melt of the Czochralski crystal growth system Czochralski method, asymmetric flow patterns and temperature profiles in the melt have been studied by many researchers. The idea that the non-symmetric structure of the growing equipment is responsible for the asymmetric profiles is usually accepted at the first time. However further researches revealed that some intrinsic instabilities not related to the non-symmetric equipment structure in the melt could also appear. Ristorcelli had pointed out that there are many possible causes of instabilities in the melt. The instabilities appears because of the coupling effects of fluid flow and temperature profiles in the melt. Among the instabilities, the B nard type instabilities with no or low crucible rotation rates are analyzed by the visualizing experiments using X-ray radiography and the 3-D numerical simulation in this study. The velocity profiles in the Silicon melt at different crucible rotation rates were measured using X-ray radiography method using tungsten tracers in the melt. The results showed that there exits two types of fluid flow mode. One is axisymmetric flow, the other is asymmetric flow. In the axisymmetric flow, the trajectory of the tracers show torus pattern. However, more exact measurement of the axisymmetrc case shows that this flow field has small non-axisymmetric components of the velocity. When fluid flow is asymmetric, the tracers show random motion from the fixed view point. On the other hand, when the observer rotates to the same velocity of the crucible, the trajectory of the tracer show a rotating motion, the center of the motion is not same the center of the melt. The temperature of a point in the melt were measured using thermocouples with different rotating rates. Measured temperatures oscillated. Such kind of oscillations are also measured by the other researchers. The behavior of temperature oscillations were quite different between at low rotations and at high rotations. Above experimental results means that the fluid flow and temperature profiles in the melt is not symmetric, and then the mode of the asymmetric is changed when rotation rates are changed. To compare with these experimental results, the fluid flow and temperature profiles at no rotation and 8 rpm of crucible rotation rates on the same size of crucible is calculated using a 3-dimensional numerical simulation. A finite different method is adopted for this simulation. 50×30×30 grids are used. The numerical simulation also showed that the velocity and flow profiles are changed when rotation rates change. Futhermore, the flow patterns and temperature profiles of both cases are not axisymmetric even though axisymmetric boundary conditions are used. Several cells appear at no rotation. The cells are formed by the unstable vertical temperature profiles (upper region is colder than lower part) beneath the free surface of the melt. When the temperature profile is combined with density difference (Rayleigh-B nard instability) or surface tension difference (Marangoni-B nard instability) on temperature, cell structures are naturally formed. Both sources of instabilities are coupled to the cell structures in the melt of the Czochralski process. With high rotation rates, the shape of the fluid field is changed to another type of asymmetric profile. Because of the velocity profile, isothermal lines on the plane vertical to the centerline change to elliptic. When the velocity profiles are plotted at the rotating view point, two vortices appear at the both sides of centerline. These vortices seem to be the main reason of the tracer behavior shown in the asymmetric velocity experiment. This profile is quite similar to the profiles created by the baroclinic instability on the rotating annulus. The temperature profiles obtained from the numerical calculations and Fourier transforms of it are quite similar to the results of the experiment. bove esults intend that at least two types of intrinsic instabilities can occur in the melt of Czochralski growing systems. Because the instabilities cause temperature fluctuations in the melt and near the crystal-melt interface, some defects may be generated by them. When the crucible size becomes large, the intensity of the instabilities should increase. Therefore, to produce large single crystals with good quality, the behavior of the intrinsic instabilities in the melt as well as the effects of the instabilities on the defects in the ingot should be studied. As one of the cause of the defects in the large diameter Silicon single crystal grown by the

  • PDF

스컬(Skull)법에 의한 Y-Ba-Cu-O계 단결정 성장 (Y-Ba-Cu-O Single Crystals Growth by Skull Method)

  • 정대식;오근호
    • 한국세라믹학회지
    • /
    • 제27권1호
    • /
    • pp.43-47
    • /
    • 1990
  • An attempt was made to grow Y-Ba-Cu-O single crystals by skull method(cold crucible process). Grown YBa2Cu3O7-x(YBC) single crystals were obtained from the upper part of the YBC solid mixture. There were plate-like YBC single crystals aligned with solidified flux along the crystal growth direction. Single crystal size was (5$\times$2$\times$0.2㎣) and was grown to a-b plane of YBC crystal structure which can flow super currents. Optical microscope and X-ray diffraction were employed characterize these microstructure and YBC single crystals.

  • PDF

루틸단결정 성장을 위한 스컬용융시스템의 조건 (Conditions of Skull melting system for rutile single crystals growth)

  • 석정원;최종건
    • 한국결정성장학회지
    • /
    • 제16권4호
    • /
    • pp.141-148
    • /
    • 2006
  • 스컬용융법은 생산원가가 낮고 crust의 재사용으로 수율이 좋아 양질의 산화물단결정성장 및 대량생산에 좋은 방법이다. 본 연구에서는 루틸단결정을 스컬용융법에 의해 성장시켰으며, 서로 다른 성장조건에서의 ingot특성을 비교하였다. 좋은 품질의 루틸 ingot 성장을 위한 조건은 직경 12, 높이 14cm 도가니 사용, 3000pF의 tank condenser 용량, 2.84 MHz의 주파수, 9시간의 용액유지시간, 2mm/h의 성장속도였다.

Growth of lead-based functional crystals by the vertical bridgman method

  • Xu Jiayue
    • 한국결정성장학회지
    • /
    • 제16권1호
    • /
    • pp.1-7
    • /
    • 2006
  • Some lead-based crystals show excellent ferroelectric, piezoelectric or scintillation properties and have attracted much attention in recent years. However, the erosion of the high temperature solution on platinum crucible and the evaporation of PbO component are the main problems often encountered during the crystal growth. In this paper, we reported recent progress on the Bridgman growth of lead-based functional crystals, such as novel relaxor ferroelectric crystals (PZNT and PMNT), scintillation crystals $(PbWO_4,\;PbF_2\;and\;PbClF)$ and piezoelectric crystals $(Pb_5Ge_3O_{11}\;and\;Pb_2KNb_5O_{15}),$ in Shanghai Institute of Ceramics, Chinese Academy of Sciences. The vertical Bridgman method has been modified to grow PZNT crystals from high temperature solution and as-grown crystals have been characterized. Large size lead-based scintillators, $PbWO_4\;and\;PbF_2$ crystals, have been mass-produced by the vertical Bridgman method in the multi-crucible fumace. These crystals have been supplied to CERN and other laboratories for high-energy physics experiments. The Bridgman growth of piezoelectric crystals $Pb_5Ge_3O_{11}\;and\;Pb_2KNb_5O_{15}$ are discussed also.

BCP의 증착 조건에 따른 광학적 특성 및 전도 기구에 미치는 영향 (Influence of the Optical Characteristics and Conductive Mechanism depending on the Deposition Condition of BCP)

  • 김원종;홍진웅
    • 한국전기전자재료학회논문지
    • /
    • 제22권11호
    • /
    • pp.980-986
    • /
    • 2009
  • In a triple-layered structure of ITO/N,N'-diph enyl-N,N'bis(3-methylphenyl)-1,1' - biphenyl-4,4'-diamine(TPD)/tris(8-hydroxyquinoline)aluminum($Alq_3$)/(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline(BCP)/Al device, we have studied the electrical and optical characteristics of organic light-emitting diodes(OLEDs) depending on the deposition condition of BCP layer. Several different sizes of holes on boat and several different deposition rates were employed in evaporating the organic materials. And then, electrical properties of the organic light-emitting diodes were measured and the performance of the devices was analyzed. It was found that the hole-size of crucible boat and the evaporation rate affect on the surface roughness of BCP layer as well as the performance of the device. When the hole-size of crucible boat and the deposition rate of BCP are 1.2 mm and $1.0\;{\AA}/s$, respectively, average surface roughness of BCP layer is lower and the efficiency of the device is higher than the ones made with other conditions. From the analysis of current density-luminance-voltage characteristics of a triple layered device, we divided the conductive mechanism by four region according to applied voltage. So we have obtained a coefficient of ${\beta}_{ST}$ in schottky region is $3.85{\times}10^{-24}$, a coefficient of ${\beta}_{PF}$ in Poole-Frenkel region is $7.35{\times}10^{-24}$, and a potential barrier of ${\phi}_{FN}$ in Fower-Nordheim region is 0.39 eV.