• Title/Summary/Keyword: Crossing

Search Result 2,192, Processing Time 0.028 seconds

Response of steel pipeline crossing strike-slip fault in clayey soils by nonlinear analysis method

  • Hadi Khanbabazadeh;Ahmet Can Mert
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.409-424
    • /
    • 2023
  • Response of the pipeline crossing fault is considered as the large strain problem. Proper estimation of the pipeline response plays important role in mitigation studies. In this study, an advanced continuum modeling including material non-linearity in large strain deformations, hardening/softening soil behavior and soil-pipeline interaction is applied. Through the application of a fully nonlinear analysis based on an explicit finite difference method, the mechanics of the pipeline behavior and its interaction with soil under large strains is presented in more detail. To make the results useful in oil and gas engineering works, a continuous pipeline of two steel grades buried in two clayey soil types with four different crossing angles of 30°, 45°, 70° and 90° with respect to the pipeline axis have been considered. The results are presented as the fault movement corresponding to different damage limit states. It was seen that the maximum affected pipeline length is about 20 meters for the studied conditions. Also, the affected length around the fault cutting plane is asymmetric with about 35% and 65% at the fault moving and stationary block, respectively. Local buckling is the dominant damage state for greater crossing angle of 90° with the fault displacement varying from 0.4 m to 0.55 m. While the tensile strain limit is the main damage state at the crossing angles of 70° and 45°, the cross-sectional flattening limit becomes the main damage state at the smaller 30° crossing angles. Compared to the stiff clayey soil, the fault movement resulting 3% tensile strain limit reach up to 40% in soft clayey soil. Also, it was seen that the effect of the pipeline internal pressure reaches up to about 40% compared to non-pressurized condition for some cases.

Development of Pedestrian Delay Model at Signalized Intersections (신호교차로 보행자 지체모형 개발)

  • Chang, Hyun-ho;Yoon, Byoung-jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.283-294
    • /
    • 2018
  • An accurate pedestrian-delay model is essential for the pedestrian-oriented evaluation of signalized intersection (SI). The crossing behaviors of pedestrians at signalized pedestrian crosswalks (SPCs) are various, and their arrival behaviors consist of two types, random and platoon. It is natural, hence, that the behaviors of pedestrian crossing and arrival should be considered in order to estimate accurate pedestrian delay. Despite this necessity, a simple pedestrian-delay model that cannot explain these behaviors of pedestrian movements is still recommended in Highway Capacity Manual (HCM). For these reasons, a pedestrian-delay model, suitable for various SPCs and SIs, is required to make pedestrian-oriented decisions on the design and operation of various SPCs and SIs. This paper proposes a novel pedestrian-delay model that is based on the behaviors of pedestrian crossing and arrival. The proposed model consists of two sub models: the one for SPC and the other for SI. The SPC delay model was developed based on the behaviors of pedestrian crossing during pedestrian green time. The SI delay model was designed based on the behaviors of pedestrian crossing and platoon arrival. The results of a numerical simulation showed that the proposed delay model can successfully overcome the under- and overestimation problems of the HCM model with explaining various behaviors of pedestrian crossing and arrival.

Study of Effectiveness of Signal Preemption Strategy using VISSIM (VISSIM을 이용한 Signal Preemption 전략도입 및 효과분석)

  • Jo, Han-Seon;O, Ju-Taek;Lee, Jae-Myeong;Park, Dong-Ju
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.4 s.90
    • /
    • pp.93-101
    • /
    • 2006
  • The signalized intersections near highway-railroad grade crossing are operated without signal preemption in Korea when trains are approaching the crossing. This signal operation is very dangerous because queues from the intersection can extend back over the track, thereby creating the Potential for a serious vehicle-train accident. And the queues from the crossing can extend to the intersection with the normal signal operation while trains Pass the crossing. In this case the intersection is disrupted, and delay and the Potential for vehicle accident increase highly In order to improve the intersection performance and Protect the accident the crossings and intersections. signal Preemption designed to provide a special control mode should be implemented. In this study it was shown that intersection Performance near highway-railroad grade crossing improved using signal preemption. When signal Preemption is implemented at the test site, the delay was reduced by about 9sec/veh. Even though there were vehicle-train accidents at the crossing in all 30 simulations without signal preemption. there was no vehicle-train accidents at all when signal preemption is used.

Detection of Zebra-crossing Areas Based on Deep Learning with Combination of SegNet and ResNet (SegNet과 ResNet을 조합한 딥러닝에 기반한 횡단보도 영역 검출)

  • Liang, Han;Seo, Suyoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.3
    • /
    • pp.141-148
    • /
    • 2021
  • This paper presents a method to detect zebra-crossing using deep learning which combines SegNet and ResNet. For the blind, a safe crossing system is important to know exactly where the zebra-crossings are. Zebra-crossing detection by deep learning can be a good solution to this problem and robotic vision-based assistive technologies sprung up over the past few years, which focused on specific scene objects using monocular detectors. These traditional methods have achieved significant results with relatively long processing times, and enhanced the zebra-crossing perception to a large extent. However, running all detectors jointly incurs a long latency and becomes computationally prohibitive on wearable embedded systems. In this paper, we propose a model for fast and stable segmentation of zebra-crossing from captured images. The model is improved based on a combination of SegNet and ResNet and consists of three steps. First, the input image is subsampled to extract image features and the convolutional neural network of ResNet is modified to make it the new encoder. Second, through the SegNet original up-sampling network, the abstract features are restored to the original image size. Finally, the method classifies all pixels and calculates the accuracy of each pixel. The experimental results prove the efficiency of the modified semantic segmentation algorithm with a relatively high computing speed.

Analysis of AI interview data using unified non-crossing multiple quantile regression tree model (통합 비교차 다중 분위수회귀나무 모형을 활용한 AI 면접체계 자료 분석)

  • Kim, Jaeoh;Bang, Sungwan
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.753-762
    • /
    • 2020
  • With an increasing interest in integrating artificial intelligence (AI) into interview processes, the Republic of Korea (ROK) army is trying to lead and analyze AI-powered interview platform. This study is to analyze the AI interview data using a unified non-crossing multiple quantile tree (UNQRT) model. Compared to the UNQRT, the existing models, such as quantile regression and quantile regression tree model (QRT), are inadequate for the analysis of AI interview data. Specially, the linearity assumption of the quantile regression is overly strong for the aforementioned application. While the QRT model seems to be applicable by relaxing the linearity assumption, it suffers from crossing problems among estimated quantile functions and leads to an uninterpretable model. The UNQRT circumvents the crossing problem of quantile functions by simultaneously estimating multiple quantile functions with a non-crossing constraint and is robust from extreme quantiles. Furthermore, the single tree construction from the UNQRT leads to an interpretable model compared to the QRT model. In this study, by using the UNQRT, we explored the relationship between the results of the Army AI interview system and the existing personnel data to derive meaningful results.

EVALUATION OF PEDESTRIAN SIGNAL TIMING AT SIGNALIZED INTERSECTION (신호횡단보도 보행등 녹색신호시간에 관한 연구)

  • 장덕명;박종주
    • Journal of Korean Society of Transportation
    • /
    • v.12 no.1
    • /
    • pp.55-73
    • /
    • 1994
  • The objective of this research is to evaluate the pedestrian signal time involving green and flashing green times. The minimum pedestrian green indication should give time for pedestrian to start crossing safely, and the flashing green indication should give time to complete the crossing. An average pedestrian crossing speed of 1.1(m/s) was estimated by analyzing the field data which was slower than the 1.2(m/s) currently used. Furthermore, the study proposed that design speed for the flashing green time should be slow speed for considerations pedestrian safety, not the average speed. The 0.78-1.01(m/s) of pedestrian speed was estimated at the elementary school areas that indicated 0.2(m/s) slower than the other areas. The pedestrian starting time (perception/reaction time) and time headway from front to back of herd was estimated to determine minimum pedestrian green time. the pedestrian starting time was estimated to determine minimum pedestrian green time. The pedestrian starting time was ranged 2.52-4.29 seconds. The time interval between the pedestrian rows was found to be 1.25-1.86 seconds, which declines as the pedestrian rows increases, The equation to calculate the pedestrian signal, which declines as the pedestrian rows increases. The equation to calculate the pedestrian signal time is proposed using the pedestrian starting time, the time interval between the pedestrian rows, and pedestrian crossing speed given area types (commercial, business, mixed, and elementary school areas), number of both-directional pedestrians for a cycle, crosswalk length and width.

  • PDF

Unsteady Aerodynamic Loads on High Speed Trains Passing by Each Other

  • Hwang, Jae-Ho;Lee, Dong-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.867-878
    • /
    • 2000
  • In order to study unsteady aerodynamic loads on high speed trains passing by each other 350km/h, three-dimensional flow fields around trains during the crossing event are numerically simulated using three-dimensional Euler equations. Roe's FDS with MUSCL interpolation is employed to simulate wave phenomena. An efficient moving grid system based on domain decomposition techniques is developed to analyze the unsteady flow field induced by the restricted motion of a train on a rail. Numerical simulations of the trains passing by on the double-track are carried out to study the effect of the train nose-shape, length and the existence of a tunnel on the crossing event. Unsteady aerodynamic loads-a side force and a drag force-acting on the train during the crossing are numerically predicted and analyzed. The side force mainly depends on the nose-shape, and the drag force depends on tunnel existence. Also. a push-pull (i.e.impluse force) force successively acts on each car and acts in different directions between the neighborhood cars. The maximum change of the impulsive force reaches about 3 tons. These aerodynamic force data are absolutely necessary to evaluate the stability of high speed multi-car trains. The results also indicate the effectiveness of the present numerical method for simulating the unsteady flow fields induced by bodies in relative motion.

  • PDF

Expression in Successive Generations of bar Gene Introduced in Petunia (Petunia에 도입된 bar Gene의 세대진전에 따른 발현 양상)

  • Ha, Young-Min;Park, Sang-Mi;Kim, Zhoo-Hyeon
    • Journal of Plant Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.261-266
    • /
    • 2004
  • This experiment was carried out to confirm the stability of bar gene introduced into petunia plant through Agrobacterium-mediated transformation, in successive generation, or after crossing or back-crossing. Some of different 25 transgenic plants were used in crossing and back-crossing to wild type, or repeated-selfing to T$_4$ generation. On the processing of experiment, it was found that some lines lost their resistant ability to herbicide basta, or showed non-Mendelian segregation mode: produced much more susceptible segregants than resistant plants. Even though there are exceptional cases, which was off from expected, the genetic stability of bar gene introduced could be confirmed strongly, because in almost case, the segregation of resistant and susceptible plants to basta was done under Mendelian-law according to single gene dominant model.

Three Color Algorithm for Two-Layer Printed Circuit Boards Layout with Minimum Via

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.3
    • /
    • pp.1-8
    • /
    • 2016
  • The printed circuit board (PCB) can be used only 2 layers of front and back. Therefore, the wiring line segments are located in 2 layers without crossing each other. In this case, the line segment can be appear in both layers and this line segment is to resolve the crossing problem go through the via. The via minimization problem (VMP) has minimum number of via in layout design problem. The VMP is classified by NP-complete because of the polynomial time algorithm to solve the optimal solution has been unknown yet. This paper suggests polynomial time algorithm that can be solve the optimal solution of VMP. This algorithm transforms n-line segments into vertices, and p-crossing into edges of a graph. Then this graph is partitioned into 3-coloring sets of each vertex in each set independent each other. For 3-coloring sets $C_i$, (i=1,2,3), the $C_1$ is assigned to front F, $C_2$ is back B, and $C_3$ is B-F and connected with via. For the various experimental data, though this algorithm can be require O(np) polynomial time, we obtain the optimal solution for all of data.

A Novel Air-Bridge Type Gate-Data Line Inter-Crossing to Reduce Signal Delay for Large Size AMLCD (대면적 AMLCD의 신호 지연 감소를 위해 Air-gap을 갖는 게이트-데이터 라인 교차 구조)

  • Park, Jin-Woo;Kang, Ji-Hoon;Lee, Min-Cheol;Han, Min-Koo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.12
    • /
    • pp.768-772
    • /
    • 1999
  • A new TFT-LCD panel with air-bridge type gate to data line inter-crossing has been proposed and its characteristics have been measured. The proposed structure has air-gap between gate and data line inter-crossing. This air-bridge TFT-LCD panel has very small capacitance between gate and data line. The new panes structure achieves 9 times fast signal propagation compared with conventional panel, which enables to have enough design margin for 20-inch diagonal and larger size UXGA panel. We have examined thermal and mechanical durability of new panel to verify applicability for commercial AMLCD production. After TEOS and polyimide passivation, this panel withstood a thermal stress at $250^{\circ}C$ and a mechanical stress during the rubbing process.

  • PDF