• Title/Summary/Keyword: Cross-section specimen

Search Result 144, Processing Time 0.025 seconds

Changes of Air Permeability and Moisture Absorption Capability of the Wood by Organosolv Pretreatment

  • Kang, Chun-Won;Jang, Eun-Suk;Jang, Sangsik;Kang, Ho-Yang;Li, Chengyuan;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.637-644
    • /
    • 2018
  • The air permeability of yellow poplar log cross section before and after organosolv pretreatment was investigated, and the moisture absorption of control and organosolv pretreated rectangular parallelepiped specimens was investigated in this study. It was revealed that the diameters of through pores were enlarged and the number of bigger pore was increased by the organosolv pretreatment. The air permeabilities of the cross sections of yellow poplar log were changed from 1.61 darcy to 23.30 darcy, but their weights were reduced by 5 percent. The equilibrium moisture content of control wood specimen at the exposed relative humidity were 5.9 % at 32 %, 9.7 % at 58 %, 14.8 % at 80.5 %, 19.7 % at 90 %, 25.7 % at 95 % and 29.9 % at 100%. The equilibrium moisture content of the specimens pretreated with the parameter of sulfuric acid catalyst of 0.5 % (w/w) were 19.5 % at 32 %, 29.3 % at 58 %, 39.6 % at 80.5 %, 59 % at 90 %, 111.3 % at 95 % and 111.3 % at 100 %, while those pretreated with the parameter of sulfuric acid catalyst of 1.0 % (w/w) were 17.4 % at 32 %, 23.9 % at 58 %, 27.7 % at 80.5 %, 40.6 % at 90 %, 68.8 % at 95 % and 110.0 % at 100 %. The moisture absorption of organosolv pretreated rectangular parallelepiped specimens was higher than that of control specimen.

Detection of Second-Layer Corrosion in Aging Aircraft

  • Kim, Noh-Yu;Yang, Seun-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.591-602
    • /
    • 2009
  • The Compton backscatter technique has been applied to lap-joint in aircraft structure in order to determine mass loss due to exfoliative corrosion of the aluminum alloy sheet skin. The mass loss of each layer has been estimated from Compton backscatter A-scan including the aluminum sheet, the corrosion layer, and the sealant. A Compton backscattering imaging system has been also developed to obtain a cross-sectional profile of corroded lap-splices of aging aircraft using a specially designed slit-type camera. The camera is to focus on a small scattering volume inside the material from which the backscattered photons are collected by a collimated scintillator detector for interpretation of material characteristics. The cross section of the layered structure is scanned by moving the scattering volume through the thickness direction of the specimen. The theoretical model of the Compton scattering based on Boltzmann transport theory is presented for quantitative characterization of exfoliative corrosion through deconvolution procedure using a nonlinear least-square error minimization method. It produces practical information such as location and width of planar corrosion in layered structures of aircraft, which generally cannot be detected by conventional NDE techniques such as the ultrasonic method.

Cu Electroplating on Patterned Substrate and Etching Properties of Cu-Cr Film for Manufacturing TAB Tape (TAB 테이프 제조를 위한 구리 도금 및 에칭에 관한 연구)

  • Kim, N. S.;Kang, T.;Yun, I. P.;Park, Y. S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.3
    • /
    • pp.158-165
    • /
    • 1994
  • Cu-Cr alloy thin film requires good quality of etching be used for TAB technology. The etched cross sec-tion was clean enough when the etching was performed in 0.1M $FeCl_3$ solution at $50^{\circ}C$. The etching rate was increased with the amount of $KMnO_4$. For enhanced profile of cross section and rate, the spray etchning was found to be superior compared to the immersion etching. A series of experiments were performed to improve the uniformity of the current distribution in electrodeposition onto the substrate with lithographic patterns. Copper was electrodeposited from quiescent-solution, paddle-agitated-solution, and air-bubbled-solution to in-vestigate the effect of the fluid flow. The thickness profile of the specimen measured by profilmetry has the non uniformity at feature scale in quiescent-solution, because of the longitudinal vortex roll caused by the natural convection. However, uniform thickness profile was achieved in paddle-agitated or air bubbled solu-tion.

  • PDF

Results of Delamination Tests of FRP- and Steel-Plate-Reinforced Larix Composite Timber

  • LEE, In-Hwan;SONG, Yo-Jin;SONG, Da-Bin;HONG, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.655-662
    • /
    • 2019
  • This study evaluated the multi-bonding performances of timbers as well as those of reinforcement and timber to obtain data for preparing guidelines regarding the use of timbers as large structural members. For the multi-bonding performances of timbers, four types of bonding surfaces were prepared according to the pith position. For the bonding performances of FRP (fiber-reinforced plastic)/steel plate and timber, a total of 11 types of specimens were produced for the selection of the appropriate adhesive. The bonding performances of the produced specimens were evaluated through a water soaking delamination test, a water boiling delamination test, and a block shear strength test. The test results showed that the bonding strength of the bonding surface according to the pith position was highest in the specimen for which the two sections with the pith at the center of the cross-section on timber and between the bonding surfaces (the tangential and radial sections were mixed) were bonded. Furthermore, the specimens for which the section (radial section) with the pith on the bonding surface of the timber was bonded showed a high delamination percentage. The results of the block shear strength test showed that the bonding section did not have a significant effect on the shear strength, and that the measured wood failure percentage was higher than the KS standard value. The PVAc adhesive showed the highest bonding strength between larix timber and GFRP (glass FRP). Furthermore, the epoxy and polyurethane adhesives showed good bonding strength for CFRP (carbon FRP) and structure steel, respectively.

Compressive behavior of built-up open-section columns consisting of four cold-formed steel channels

  • Shaofeng, Nie;Cunqing, Zhao;Zhe, Liu;Yong, Han;Tianhua, Zhou;Hanheng, Wu
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.907-929
    • /
    • 2022
  • Compression experiments were conducted to investigate the compressive behavior of built-up open-section columns consisting of four cold-formed steel channels (BOCCFSs) of different lengths, thicknesses, and cross-section sizes (OB90 and OB140). The load-displacement curves, failure modes, and maximum compression strength values were analyzed in detail. The tests showed that the failure modes of the OB90 specimens transformed from a large deformation concentration induced by local buckling to flexural buckling with the increase in the slenderness ratio. The failure modes of all OB140 specimens were deformation concentration, except for one long specimen, whose failure mode was flexural buckling. When the slenderness ratios of the specimens were less than 55, the failure modes were controlled by local buckling. Finite element models were built using ABAQUS software and validated to further analyze the mechanical behavior of the BOCCFSs. A parametric study was conducted and used to explore a wide design space. The numerical analysis results showed that when the screw spacing was between 150 mm and 450 mm, the difference in the maximum compression strength values of the specimens was less than 4%. The applicability and effectiveness of the design methods in Chinese GB50018-2002 and AISI-S100-2016 for calculating the compression strength values of the BOCCFSs were evaluated. The prediction methods based on the assumptions produced predictions of the strength that were between 33% to 10% conservative as compared to the tests and the finite element analysis.

Effects of Oxide Growth on Mechanical Properties Degradation of Zirconium Alloys (산화막 성장이 지르코늄 합금의 기계적 물성 열화에 미치는 영향)

  • Jeon Sang-hwan;Kim Yong-soo
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.579-586
    • /
    • 2004
  • A study on the effects of oxide growth on the mechanical properties degradation of pure zirconium and Zircaloy-4 is carried out with high temperature tensile tests. It is found that the mechanical properties can deteriorate with the oxide growth less than $1\%$ of total specimen cross section, especially at $300\~400^{\circ}C$ that is zirconium alloy cladding temperature during the nuclear reactor operation. It is also revealed that Young's modulus changes little but yield strength and tensile strength drop down to $20\% and 40\%$ of the room temperature strength, respectively, in the temperature range. Fractographic analysis shows that the number of dimples decreases and fractured surface becomes smooth with increasing oxide thickness.

Fracture Toughness of Wood Grown in Korea (II) - Mode I Fracture of Hardwoods - (국산재의 파괴인성에 관한 연구 (II) - 활엽수의 모-드 I 파괴 -)

  • Lee, Jun-Jae;Shim, Kug-Bo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.6-13
    • /
    • 1991
  • Tests of notched specimens of ten hardwood species in the LR and LT systems were conducted to investigate fracture toughness($K_{IC}$) and effective moduli of elasticity(MOE). $K_{IC}$ values were examined in relation to MOR, MOE, specific gravity of clear wood specimens. It was found in both systems that there were significant relationship between $K_{IC}$ and MOR, $K_{IC}$ and specific gravity. To predict the effective MOE of notched specimen from MOE of clear wood, it was analyzed by using equvalent cross-section method. In LR system, the observed values were similar to the predicted values, but in LT system, both were not agreed as the ovserved values were smaller. However. the results were shown that this method was avaliable to predict the effective MOE of notched specimens.

  • PDF

Application of laser spot welding (레이저 점 용접의 응용)

  • Yang, Y. S.;Chung, I.;Seo, J.;Han, Y. H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.41-49
    • /
    • 1997
  • Laser spot welding offers a unique combination of high speed. precision and low heat distortion, compared with conventional resistance spot welding. This combinatin of advantages is especially attractive for the automotive industry. Until now automobile fabrication is widely used resistance spot welding, however, because of geometric and structural problem, spot welding is required many welding machine in that reason by substituting spot welding with laser welding, it save the equipment cost. In the present study we measured ultimate strength and observed bead cross section of laser welded specimen and compared with that of the resistance spot welding results in order to adapt laser welding in automobile industry. Also for strength esti- mation we calculated the residual stress of laser welded zone. All calculations are performed with the ABAQUS code on a workstation.

  • PDF

Uniaxial bond stress-slip behavior of reinforcing bars embedded in lightweight aggregate concrete

  • Tang, Chao-Wei
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.651-661
    • /
    • 2017
  • This paper presents an experimental study of bond-slip behavior of reinforced lightweight aggregate concrete (LC) and normal weight concrete (NC) with embedded steel bar. Tests were conducted on tension-pull specimens that had cross-sectional dimension with a reinforcing bar embedded in the center section. The experimental variables include concrete strength (20, 40, and 60 MPa) and coarse aggregate type (normal-weight aggregate and reservoir sludge lightweight aggregate). The test results show that as concrete compressive strength increased, the magnitudes of the slip of the LC specimens were greater than those of the NC specimens. Moreover, the bond strength and stiffness approaches zero at the loaded end, or close to the central anchored point of the specimen. In addition, the proposed bond stress-slip equation can effectively estimate the behavior of bond stress and steel bar slipping.

Modeling of sulfate ionic diffusion in porous cement based composites: effect of capillary size change

  • Gospodinov, Peter N.
    • Computers and Concrete
    • /
    • v.4 no.2
    • /
    • pp.157-166
    • /
    • 2007
  • The paper considers a theoretical model to study sulfate ion diffusion in saturated porous media - cement based mineral composites, accounting for simultaneous effects, such as filling micro-capillaries (pores) with ions and chemical products and liquid push out of them. Pore volume change and its effect on the distribution of ion concentration within the specimen are investigated. Relations for the distribution of the capillary relative radius and volume within the composite under consideration are found. The numerical algorithm used is further completed to consider capillary size change and the effects accompanying sulfate ion diffusion. Ion distribution within the cross section and volume of specimens fabricated from mineral composites is numerically studied, accounting for the change of material capillary size and volume. Characteristic cases of 2D and 3D diffusion are analyzed. The results found can be used to both assess the sulfate corrosion in saturated systems and predict changes occurring in the pore structure of the composite as a result of sulfate ion diffusion.