• Title/Summary/Keyword: Cross-linking agents

Search Result 51, Processing Time 0.033 seconds

Preparation and Electrochemical Applications of Pore-filled Ion-exchange Membranes with Well-adjusted Cross-linking Degrees: Part I. All Vanadium Redox Flow Battery (가교도가 조절된 세공충진 이온교환막의 제조 및 전기화학적 응용: Part I. 전 바나듐 레독스 흐름전지)

  • Lee, Ji-Eun;Park, Ye-Rin;Kim, Do-Hyeong;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.406-414
    • /
    • 2017
  • In this study, we have developed pore-filled ion-exchange membranes (PFIEMs) filled with ionomer in a thin polyethylene porous film (thickness = $25{\mu}m$) and investigated the charge-discharge characteristics of the all vanadium redox flow battery (VRFB) employing them. Especially, the degree of crosslinking and free volume of the PFIEMs were appropriately controlled to produce ion-exchange membranes exhibiting both the low membrane resistance and low vanadium permeability by mixing crosslinking agents having different molecular size. As a result, the prepared PFIEMs exhibited excellent electrochemical properties which are comparable to those of the commercial membranes. Also, it was confirmed through the experiments of vanadium ion permeability and VRFB performance evaluation that the PFIEMs showed low vanadium ion permeability and high charge-discharge efficiency in comparison with the commercial membrane despite their thin film thickness.

Effects of Cross-linking Agents on the Acetic Acid Dehydration Behaviors of PVA-PAN Composite Hollow Fiber Membranes (가교제 종류가 PVA-PAN 복합 중공사 분리막의 초산 탈수 거동에 미치는 영향)

  • Kang, Su Yeon;Kim, Ji Seon;Cho, Eun Hye;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.24 no.4
    • /
    • pp.311-316
    • /
    • 2014
  • The polyacrylonitrile (PAN) hollow fiber composite membranes were prepared and their pervaporation performance was tested to concentrate the acetic acid aqueous solution. The coating of the composite membranes were confirmed by SEM images and the coating thickness was averagely $3.85{\mu}m$. As the crosslinking agent and the crosslinking temperature increase, the permeability decreases while the separation factor increases. Typically, the permeability $250g/m^2{\cdot}hr$ and the separation factor 13 were obtained for glutaraldehyde 13 wt% as the crosslinking agent and crosslinking temperature $140^{\circ}C$. And for the use of another crosslinking agent, poly (acrylic acid) 9 wt% and crosslinking temperature $140^{\circ}C$, the permeability $330g/m^2{\cdot}hr$ and separation factor 9 were obtained.

Partially Hydrolyzed Crosslinked Alginate-graft-Polymethacrylamide as a Novel Biopolymer-Based Superabsorbent Hydrogel Having pH - Responsive Properties

  • Pourjavadi A.;Amini-Fazi M. S.;Hosseinzadeh H.
    • Macromolecular Research
    • /
    • v.13 no.1
    • /
    • pp.45-53
    • /
    • 2005
  • In this study, a series of highly swelling hydrogels based on sodium alginate (NaAlg) and polymethacryl­amide (PMAM) was prepared through free radical polymerization. The graft copolymerization reaction was performed in a homogeneous medium and in the presence of ammonium persulfate (APS) as an initiator and N,N'-methylenebis­acrylamide (MBA) as a crosslinker. The crosslinked graft copolymer, alginate-graft-polymethacrylamide (Alg-g­PMAM), was then partially hydrolyzed by NaOH solution to yield a hydrogel, hydrolyzed alginate-graft-poly­methacrylamide (H-Alg-g-PMAM). During alkaline hydrolysis, the carboxamide groups of Alg-g-PMAM were converted into hydrophilic carboxylate anions. Either the Alg-g-PMAM or the H-Alg-g-PMAM was characterized by FTIR spectroscopy. The effects of the grafting variables (i.e., concentration of MBA, MAM, and APS) and the alkaline hydrolysis conditions (i.e., NaOH concentration, hydrolysis time, and temperature) were optimized systematically to achieve a hydrogel having the maximum swelling capacity. Measurements of the absorbency in various aqueous salt solutions indicated that the swelling capacity decreased upon increasing the ionic strength of the swelling medium. This behavior could be attributed to a charge screening effect for monovalent cations, as well as ionic cross-linking for multivalent cations. Because of the high swelling capacity in salt solutions, however, the hydrogels might be considered as anti-salt superabsorbents. The swelling behavior of the superabsorbing hydrogels was also measured in solutions having values of pH ranging from 1 to 13. Furthermore, the pH reversibility and on/off switching behavior, measured at pH 2.0 and 8.0, suggested that the synthesized hydrogels were excellent candidates for the controlled delivery of bioactive agents. Finally, we performed preliminary investigations of the swelling kinetics of the synthesized hydrogels at various particle sizes.

Origin and effective ingredient standards of honeybee venom as natural antibiotic ingredients (천연항생제로서 봉독의 기원 및 지표성분 설정)

  • Han, SangMi;Kim, JungMin;Han, SangHoon;Yeo, JooHong;Hong, InPyo;Woo, SoonOk;Lee, KwangGill;Kweon, HaeYong
    • Korean Journal of Veterinary Service
    • /
    • v.37 no.2
    • /
    • pp.123-129
    • /
    • 2014
  • This research was performed in order to investigate the origin, standard compound, and structural and physical properties of honeybee venom which used as natural antibiotic ingredients to animal. We compared the nucleotide sequence of mitochondrial cytochrome c oxidase subunit 1 gene (COI) of honeybees were collected from Gangwon, Gyeonggi, Chungnam, Gyeongbuk, Gyeongnam province and Suwon. As major constituent of honeybee venom, melittin was assayed by liquid chromatography. X-ray, differential scanning calorimetry (DSC) and fourier transform infrared spectroscopy (FT-IR) were utilized to examine the structural and physical properties of honeybee venom. Based on the 627bp sequence of COI, Apis mellifera ligustica was determinated honeybees collected from all six regions. Melittin content varied from 50.7 to 68.6 and averaged 59.8%. According to XRD analysis, honeybee venom showed regular crystal structure peaks at $2{\Theta}=8.5^{\circ}$ and $21.5^{\circ}$. DSC showed that the maximum degration temperature of powder was around $230^{\circ}C$. Through FT-IR analysis, we could identify cross-linking by the presence of peptide peak at 1,500~1,600 $cm^{-1}$. In conclusion, the origin of honeybee venom was Apis mellifera ligustica and effective ingredient standards was melittin content varied from 50.7 to 68.6 as natural antibiotic ingredients.

Effects of Peroxides on the Properties of Reclaimed Polypropylene/Waste Ground Rubber Tire Composites Prepared by a Twin Screw Extrusion

  • Kim, Seonggil;Lee, Minji;Lee, Hyeongsu;Jeong, Hobin;Park, Yuri;Jhee, Kwang-Hwan;Bang, Daesuk
    • Elastomers and Composites
    • /
    • v.51 no.1
    • /
    • pp.17-23
    • /
    • 2016
  • In this study, the reclaimed polypropylene (RPP) and waste ground rubber tire (WGRT) were used to simulate the thermoplastic vulcanizate (TPV) for cost reduction and resources recycling. Also, we examined the effects of dicumyl peroxide (DCP) and 2,5-dimethyl-2,5-di-(tert-butylperoxy)-hexane (DTBPH) as peroxide type cross-linking agents to enhance the properties of TPV's. The components of RPP and WGRT were fixed at 30 and 70 wt%, and DCP and DTBPH were added in the concentrations from 0.5 to 1.5 phr, respectively. RPP/WGRT composites with different contents of DCP and DTBPH were prepared by a modular intermeshing co-rotating twin screw extruder. The Young's modulus of composites were decreased with increasing peroxides contents. On the other hand, tensile strength, elongation at break, and impact strength of the composites were increased with peroxide contents. We also confirmed that interfacial adhesion between RPP and WGRT was considerably improved by adding the peroxides. Taken together, DTBPH added RPP/WGRT composites exhibited better mechanical properties rather than those of DCP added composites.

Immobilization of $\beta$-glucosidase and properties of Immobilized Enzyme ($\beta$-glucosidase의 고정화와 효소 반응특성)

  • 정의준;이상호이용현
    • KSBB Journal
    • /
    • v.5 no.2
    • /
    • pp.141-149
    • /
    • 1990
  • $\beta$-glucosidase derived from Aspergillus niger was immobilized by (1) covalent linkage on chitin and chitosan with glutaraldehyde, (2) adsorption on DEAE-cellulose and Amberite IRA93 after succinylation, and (3) entrapment on alginate and polyacrylamide gels with various cross linking agents. The retention yield of $\beta$-glucosidase immobilized on chitosan was 31.5% and operational stability was 69% after continuous operation at column reactor(5$0^{\circ}C$ at pH 4.8) for 15 days. The retention yield and operational stability were 24.7% and 60% respectively, in adsorption on Amberite IRA 93. On the other hand, the entrapment method by alginate and polyacrylamide gel was identified to be not appropriate due to the continuous elution of inlmobilized $\beta$-glucosidase. Optimum conditions for the immobilization on chitosan were also studied with optimum pH of 4.8 and glutaraldehyde concentration of 0.4%(w/v). The properties and stability of immobilized $\beta$-glucosidase are also investigted. The conversion yield of cellobiose to glucose was also analyzed using the column type enzyme reactor to evaluate the effectiveness of immobilized enzyme.

  • PDF

The Effects of Coupling Agent and Crosslinking Agent in the Synthesis of Acrylic Pressure Sensitive Adhesive for Polarizer Film (편광필름용 아크릴 점착제의 합성에서 커플링제와 가교제의 효과)

  • Lim, Chang-Hyuk;Ryu, Hoon;Cho, Ur-Ryong
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.319-325
    • /
    • 2009
  • The solution polymerization was conducted to synthesize pressure sensitive adhesive for polarizer film using acrylic monomers. 2-Ethylhexylacrylate, butylacrylate, acrylic acid were used as acrylic monomers. The ratio was 2-ethylliexylacrylate:butylacrylate:acrylic acid=25:50:3.6 by reflecting $-40^{\circ}C$ of glass transition temperature in the pressure sensitive adhesive. When 1 wt% of coupling agent was added to the polymerized pressure sensitive adhesive, the light transmissivity was significantly increased. This result is due to the enhancement of adhesive power against liquid crystal cell by Si-O bond of coupling agents. Cross-linking agent was added by 0.5, 1.0, and 1.5 wt% with respect to the synthesized polymer. Initial tackiness decreased, while cohesion increased with increasing crosslinking agent. In the analysis of contact angle, the increase of crosslinking agents yielded the enhancement of surface energy, resulting in the decrease of contact angle. From the measurement of heat resistance, the acrylic pressure sensitive adhesive showed excellent heat resistance regardless of change in temperature and contents in crosslinking agent. In the observation of a cutting plane, the increased crosslinking agent represented a smoother and cleaner section. Comprehensively, the optimum additive amount of crosslinking agent was determined to be 1.0 wt% to monomer.

Natural Origin Polymers: Applications as Wound Care Materials (자연 고분자 : 상처 치료 재료로 활용)

  • Karadeniz, Fatih;Sung, Hye Kyeong;Kim, Han Seong
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.382-393
    • /
    • 2019
  • Wound care is a health industry concern affecting millions worldwide. Recent increase in metabolic disorders such as diabetes comes with elevated risk of wound-based complications. Treatment and management of wounds are difficult practices due to complexity of the wound healing process. Conventional wound dressings and treatment applications only provide limited benefits which are mainly aimed to keep wound protected from external factors. To improve wound care, recent developments make biopolymers to be of high interest and importance to researchers and medical practitioners. Biopolymers are polymers or natural origin produced by living organisms. They are credited to be highly biocompatible and biodegradable. Currently, studies reported biopolymers to exhibit various health beneficial properties such as antimicrobial, anti-inflammatory, hemostatic, cell proliferative and angiogenic activities which are crucial for effective wound management. Several biopolymers, namely chitosan, cellulose, collagen, hyaluronic acid and alginic acid have been already investigated and applied as wound dressing agents. Different derivatives of biopolymers have also been developed by cross-linking with other molecules, grafting with other polymers, and loading with bioactive agents or drugs which showed promising results towards wound healing without any undesired outcome such as scarring and physiological abnormalities. In this review, current applications of common biopolymers in wound treatment industry are highlighted to be a guide for further applications and studies.

Effects of Heat Treatment on Protein Quality as Lysine Damage (열처리가 Lysine 손상에 의한 단백질의 품질에 미치는 영향)

  • 이경혜
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.5
    • /
    • pp.816-828
    • /
    • 1995
  • During the industrial preparation and the storage of foods, the side chain of some protein-bound amino acids can react chemically each other or with other molecules present in the food. The following reactions have been described : destruction of amino acids, racemization, protein-protein interactions, reactions of proteins with reducing sugars, oxidizing agents, or polyphenols. Apart from total destruction, the main reacitons are the forming of Maillard reactions products(e.g. fructoselysine) and the crosslinking with other amino acids in the same or in another protein molecule(e.g. lysinoalanine). The most often involved amino acid is lysine because of its free functional ${\varepsilon}-amino$ acid group. Generally derivatives of amino acids or crosslinks in polypeptides influence the bioavailability and the overall digestibility of the protein. This work reviews the technological, analytical, nutritional, and physiological problems related to the formation of fructoselysine and lysinolalnine in human foods, and evaluates the possible health risk for humans. A summary of the available information is of help in considering whether or not the presence of fructoselysine/lysinoalanine in foods represents a danger to man. The reduction in protein quality through these reactions is not a problem for the general population, but it is extremely important in infant foods, since infants are often nourished with a limited number of food product(e.g. formular foods) which are sensitive to the Mailard reaction.

  • PDF

The Effect of Fixing Agents and Softner on Sericin Fixation of Trimethylolmelamine (트리메틸올멜라민의 세리신 정착에 있어 정착제와 유연제의 영향)

  • Park, Geon-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.93-98
    • /
    • 2017
  • The fixing behaviors of raw silk yarns treated with melamine and formaldehyde at a molar ratio of 1:3 for trimethylolmelamine were investigated. Sericin was fixed during the fixing process, but a part of sericin I was removed simultaneously by hot water. The weight losses by fixing and the degumming losses by degumming greatly decreased with increasing concentrations of melamine and formaldehyde. The silk yarns fixed with 0.011 M melamine and 0.033M formaldehyde were significantly degummed due to the insufficient fixation of sericin and the alkaline hydrolysis of sericin by sodium carbonate during the degumming process. On the other hand, the silk yarns fixed with 0.055M melamine and 0.165M formaldehyde were degummed slightly (the degumming losses of 3-8%) due to the strong fixation of sericin, which might result from the many cross-linkages between the sericin I molecules, which were formed by trimethylolmelamine. Those fixed with the fixing solution containing 15% owf softener showed the lowest weight and degumming losses because under the condition of 15% owf softener, the cation of the softener can effectively form ionic bonds with the negatively charged side chain of aspartic acid in sericin. In addition, van der Waals' forces may be also formed between the hydrophobic tail of the softener and the hydrophobic region of sericin, which may help inhibit the removal of sericin I.