• Title/Summary/Keyword: Cross-linking agent

Search Result 136, Processing Time 0.031 seconds

Preparation and Characteristic Studies of Sulfonated Poly (vinyl alcohol) Composite Membranes Containing Aluminum Silicate for PEMFC (고분자 전해질형 연료전지를 위한 알루미늄 실리케이트를 함유한 설폰화 폴리(비닐알코올) 복합막의 제조 및 특성연구)

  • Hwang, In-Seon;Nahm, Kee-Suk;Yoo, Dong-Jin
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.171-177
    • /
    • 2011
  • PVA/GLA/$Al_2O_3{\cdot}3SiO_2$ composite membranes were prepared through the reaction polyvinyl alcohol (PVA) with glutaraldehyde (GLA) as a cross-linking agent and subsequently adding aluminum silicate ($Al_2O_3{\cdot}3SiO_2$) as an inorganic material. The water uptake decreased as the GDL contents increased due to cross-linking process of PVA with GDL, and the ion conductivity increased as the $Al_2O_3{\cdot}3SiO_2$ contents increased in PVA/GLA/$Al_2O_3{\cdot}3SiO_2$ composite membranes. The cross-linking structure of the polymers was confirmed using IR and the tendency of water uptake. The thermal analysis of the copolymers was carried out by TGA. TGA results showed that PVA/GLA composite membrane were more heat-resistant than PVA due to the cross-linking of PVA, and the heat stability of the composite membranes improved much more as the concentration of $Al_2O_3{\cdot}3SiO_2$ increased. Membranes prepared in this study seem to be have thermal stability and increase a tendency of the cation conductivity up to $60^{\circ}C$, but to be exhibit lower performance tendency at over $90^{\circ}C$. Therefore, it is necessary to do more aggressive effort to explore the possibility of application as an ion-conductive composite electrolyte.

Galangin의 유전독성 억제효과에 관한 연구

  • 허문영;윤여표
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.325-325
    • /
    • 1994
  • 본 연구에서는 먼저 14종의 flavonoid화합물을 대상으로 발암물질로서 잘 알려져있는 benzo(a)pyrene[B(a)P]에 대한 소핵생성억제효과를 관찰하였다. 소핵시험을 이용한 유전독성억제실험에서 비적적 큰 활성을 보이는 flavonoid는 2,3 이중결합과 3,5,7-trihydroxyl기를 갖는 polyhydroxy flavonol화합물들이었다. 이중에서 galangin은 활성이 비교적 컸으며, 이같은 유전독성억제효과는 galangin투여시 B(a)P의 대사활성화가 감소되고 활성본태산물들의 DNA binding을 저해함으로서 나타났다. 한편, galangin은 대사활성화가 필요없는 1차 발암물질인 N-methyl-N'-nitro-N-nitrosoguanidine(MNNG)에 의한 소핵생성도 감소시켰다. 이러한 galangin의 alkylating agent에 대한 유전독성억제효과는 calf thymus DNA를 이용한 실험에서 DNA의 메칠화를 저해하는 기전으로 나타나는 것으로 판단되었다. galangin은 mitouycin과 같은 DNA cross-linking agent에 의한 소핵생성에도 억제효과를 나타내었다. 특히 동시투여(simultaneous treatment)나 사후투여(post-treatment)시보다 사전투여(pre-treatment)시에 소핵생성억제효과가 컸으며 사전연속투여(multiple Pre-treatment)시에는 낮은 용량에서도 효과가 컸다. 이러한 저용량의 사전연용투여에 의한 유전독성억제효과들은 B(a)P나 MNNG에 대해서도 잘 나타났다.

  • PDF

Cycling Performance of Li4Ti5O12 Electrodes in Ionic Liquid-Based Gel Polymer Electrolytes

  • Kim, Jin-Hee;Kang, Yong-Ku;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.608-612
    • /
    • 2012
  • We investigated the cycling behavior of $Li_4Ti_5O_{12}$ electrode in a cross-linked gel polymer electrolyte based on non-flammable ionic liquid consisting of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide and vinylene carbonate. The $Li_4Ti_5O_{12}$ electrodes in ionic liquid-based gel polymer electrolytes exhibited reversible cycling behavior with good capacity retention. Cycling data and electrochemical impedance spectroscopy analyses revealed that the optimum content of the cross-linking agent necessary to ensure both acceptable initial discharge capacity and good capacity retention was about 8 wt %.

Industry safety characteristic of Prismatic EDLCs (각형 전기이중층 커패시터의 산업 안전성)

  • 김경민;장인영;강안수
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.05a
    • /
    • pp.247-257
    • /
    • 2004
  • Electrodes were fabricated based on activated carbon powder BP-20, conducting agent such as Super P, vapor grown carbon fiber (VGCF) and acetylene black (AB), and the mixed binders of flexible poly(vinylidenefluoridehexafluoropropylene) [P(VdF-co-HFP)] and cross linking dispersion agent of polyvinylpyrrolidone (PVP) to increase mechanical strength. According to impedance measurement of the electrode with the addition of conducting agent, we found that it was possible to charge rapidly by the fast steady-state current convergence due to low equivalent series resistance (AC-ESR, fast charge transfer rate at interface between electrode and electrolyte and low RC time constant. The self-discharge of unit cell showed that diffusion process was controlled by the ion concentration difference of initial electrolyte due to the characteristics of Electric Double Layer Capacitor (EDLC) charged by ion adsorption in the beginning, but this by current leakage through the double-layer at the electrode/electrolyte interface had a minor effect and voltages of curves were remained constant regardless of electrode material. We found that the 2.3V/230F grade EDLC would be applied to industrial safety usage such as uninterrupted power supply (UPS) because of the constant DC-ESR by IR drop regardless of discharge current.

  • PDF

Fabrication and Characterization of 3-D Porous Collagen Scaffold (3차원 다공성 콜라겐지지체의 제조 및 특성 분석)

  • Kim, Jin-Tae;Lim, Sumin;Kim, Byoung Soo;Lee, Deuk Yong;Choi, Jae Ha
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.192-196
    • /
    • 2014
  • Collagen scaffolds were synthesized by cross linking into a solution mixture of 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochlorid(EDC) in ethanol, followed by pressing, cleaning and lyophilization process after the type I atelo-collagen solutions in D.I water(pH3). The experimental conditions are collagen concentration of 1.0 wt%, 3.0 wt%, 5.0 wt% and differential concentration of cross-linker. Then, parametric studies were performed by varying the parameters to investigate the morphology, the porosity, the swelling ratio and the thickness and genotoxicity of the scaffolds. The scaffolds thickness pattern was regular to concentration of the degree of cross-linker and collagen. It was observed that the swelling ratio, the degree of crosslink, and the pore size(thickness of scaffold) can be controlled by adjusting the collagen, crosslinker. Among the parameters investigated, the smallest thickness can be achieved by collagen, crosslinker concentrate condition. The collagen scaffold is induced no genotoxicity. The lowest swelling ratio, as an indication of the highest degree of crosslink, can be obtained by adding crosslink agent.

Synthesis and Characterization of Novel pH-Sensitive Hydrogels Containing Ibuprofen Pen dents for Colon-Specific Drug Delivery

  • Mahkam, Mehrdad;Poorgholy, Nahid;Vakhshouri, Laleh
    • Macromolecular Research
    • /
    • v.17 no.9
    • /
    • pp.709-713
    • /
    • 2009
  • The aim of this study was to develop novel intestinal specific drug delivery systems with pH sensitive swelling and drug release properties. The carboxyl group of ibuprofen was converted to a vinyl ester group by reacting ibuprofen and vinyl acetate as an acylating agent in the presence of catalyst. The glucose-6-acrylate-1, 2, 3, 4-tetraacetate (GATA) monomer was prepared under mild conditions. Cubane-1, 4-dicarboxylic acid (CDA) linked to two 2-hydroxyethyl methacrylate (HEMA) group was used as the crosslinking agent (CA). Methacrylic-type polymeric prodrugs were synthesized by the free radical copolymerization of methacrylic acid, vinyl ester derivative of ibuprofen (VIP) and GATA in the presence of cubane cross linking agent. The structure of VIP was characterized and confirmed by FTIR, $^1H$ NMR and $^{13}C$ NMR spectroscopy. The composition of the cross-linked three-dimensional polymers was determined by FTIR spectroscopy. The hydrolysis of drug polymer conjugates was carried out in cel-lophane membrane dialysis bags, and the in vitro release profiles were established separately in enzyme-free simulated gastric and intestinal fluids (SGF, pH 1 and SIF, pH 7.4). The detection of a hydrolysis solution by UV spectroscopy at selected intervals showed that the drug can be released by hydrolysis of the ester bond between the drug and polymer backbone at a low rate. Drug release studies showed that increasing the MAA content in the copolymer enhances the rate of hydrolysis in SIP. These results suggest that these polymeric prodrugs can be useful for the release of ibuprofen in controlled release systems.

Effect of Cross-linking Treatment of Lyocell Fabric on Carbon Fabric Properties (리오셀 섬유의 가교 처리가 탄소 직물 특성에 미치는 영향)

  • Lee, Su-Oh;Park, Gil-Young;Kim, Woo-Sung;Hwang, Tae-Kyung;Kim, Yun-Chul;Seo, Sang-Kyu;Chung, Yong-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.6
    • /
    • pp.21-27
    • /
    • 2019
  • Cellulose-based carbon fabrics are used in aerospace nozzles have low thermal conductivity and high ablation resistance. However, there is a disadvantage in that the weight is reduced by 70~90% in the pyrolysis process and graphitization process and the residual rate is low when the final carbon fabric is produced. In this study, phosphoric acid as a phosphorus flame retardant and Citric acid as a cross-linking agent were treated on the lyocell fabrics. After that the functional groups were identified and thermal properties were confirmed by FT-IR, XRD and TGA. The yields of the final carbon fabrics were also compared through the pyrolysis and graphitization process. The graphitized yield increased to 8.1% with increasing citric acid to 16 wt% added.

Effect of Various Cross-linking Types on the Physical Properties in Carbon Black-Filled Natural Rubber Compound (천연고무 배합물에서 가교형태 변화가 물성에 미치는 영향)

  • Park, Byung-Ho;Jung, Il-Gouen;Park, Sung-Soo
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.63-70
    • /
    • 2001
  • The objective of this study was to investigate the effect of cure type on the processing and physical properties under conditions of similar stress-strain properties. On the carbon black filled natural rubber(NR) based compound, the induction time decreased, but the cure rate became fast with increasing loading of sulfur donor agent. Tensile strength was little affected on the curing type. However, elongation generally decreased with increasing accelerator. Effect of cure type on the blow-out properties was followings: CV

  • PDF

Antiglycation and Protective Effect of Juglans regia L. in MGO-induced Renal cell Death (호두 열매 추출물의 메틸글라이옥살 유도 신장 세포손상 억제 효과 및 당화억제 효능)

  • Ji-Won, Choi;Sang Yoon, Choi;Guijae, Yoo;Jinyoung, Hur
    • Journal of the Korean Society of Food Culture
    • /
    • v.37 no.6
    • /
    • pp.503-509
    • /
    • 2022
  • Methylglyoxal is a highly reactive precursor which forms advanced glycation end products (AGEs). AGEs and methylglyoxal are known to induce various diseases such as diabetes, vascular disorders, Diabetes Mellitus (DM), and neuronal disorders. Juglans regia L is an important food commonly used worldwide, having nutritious components, including phenolic compounds. Since ancient times, Juglans regia L have been differently applied by various countries for health and in diverse diseases, including arthritis, asthma, skin disorders, cancer, and diabetes mellitus. However, the effect of diabetes-induced renal damage against AGEs remains unclear. This study evaluates the anti-glycation and renal protective effects of ethanol extract of Juglans regia L against methylglyoxal-induced renal tubular epithelial cell death. Exposure to methylglyoxal resulted in reduced cell viability in NRK-52E cells, but co-treatment with Juglans regia L extracts significantly increased the cell viability. In addition, we examined the anti-glycation effect of Juglans regia L extracts. Compared to the positive control aminoguanidine and Alagebrium, treatment with Juglans regia L extracts significantly inhibited the formation of AGEs, collagen cross-linking, and breaking collagen cross-linking. Taken together, our results indicate that Juglans regia L is a potential therapeutic agent for regulating diabetic complications by exerting anti-glycation and renal protective activities.

Preparation and Swelling Property of Superporous Hydrogels using Glycol Chitosan (글리콜키토산을 이용한 초다공성 하이드로젤의 제조 및 팽윤거동)

  • Kuang, Jia;Li, Zheng-Zheng;Yun, Chwi-Im;Yuk, Kun-Young;Huh, Kang-Moo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.263-268
    • /
    • 2009
  • Superporous Hydrogels (SPHs) have been extensively investigated for various biomedical applications due to their fast swelling and superabsorbent properties. In this study, glycol chitosan that is one of most abundant natural polymers was used as a cross-linking agent instead of bisacrylamide (BIS), which is a broadly used crosslinking agent for preparation of SPHs. Glycol chitosan was modified to have reactive vinyl groups by chemical conjugation with glycidyl methacrylate (GMA). The vinyl group-containing glycol chitosan (GC-GMA) was characterized by FT-IR and $^1H$-NMR measurements. SPHs have been prepared in various synthetic conditions to establish the optimum synthetic process for making superporous structure, where the inner pores are interconnected to each other to form a open channel structure. Various SPHs with different GC-GMA contents have been successfully prepared and have been observed to show faster swelling properties than other conventional SPHs. From the study on the swelling behavior of SPHs, the GC-GMA content is considered to be an important factor for controlling their swelling properties.