Browse > Article
http://dx.doi.org/10.5855/ENERGY.2011.20.3.171

Preparation and Characteristic Studies of Sulfonated Poly (vinyl alcohol) Composite Membranes Containing Aluminum Silicate for PEMFC  

Hwang, In-Seon (Department of Hydrogen and Fuel Cells Engineering, Specialized Graduate School, Chonbuk National University)
Nahm, Kee-Suk (Department of Hydrogen and Fuel Cells Engineering, Specialized Graduate School, Chonbuk National University)
Yoo, Dong-Jin (Department of Hydrogen and Fuel Cells Engineering, Specialized Graduate School, Chonbuk National University)
Publication Information
Abstract
PVA/GLA/$Al_2O_3{\cdot}3SiO_2$ composite membranes were prepared through the reaction polyvinyl alcohol (PVA) with glutaraldehyde (GLA) as a cross-linking agent and subsequently adding aluminum silicate ($Al_2O_3{\cdot}3SiO_2$) as an inorganic material. The water uptake decreased as the GDL contents increased due to cross-linking process of PVA with GDL, and the ion conductivity increased as the $Al_2O_3{\cdot}3SiO_2$ contents increased in PVA/GLA/$Al_2O_3{\cdot}3SiO_2$ composite membranes. The cross-linking structure of the polymers was confirmed using IR and the tendency of water uptake. The thermal analysis of the copolymers was carried out by TGA. TGA results showed that PVA/GLA composite membrane were more heat-resistant than PVA due to the cross-linking of PVA, and the heat stability of the composite membranes improved much more as the concentration of $Al_2O_3{\cdot}3SiO_2$ increased. Membranes prepared in this study seem to be have thermal stability and increase a tendency of the cation conductivity up to $60^{\circ}C$, but to be exhibit lower performance tendency at over $90^{\circ}C$. Therefore, it is necessary to do more aggressive effort to explore the possibility of application as an ion-conductive composite electrolyte.
Keywords
polymer electrolyte membrane; composite membrane; aluminium silicate; polyvinyl alcohol;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kumar G. G.; Kim A. R.; Nahm K. S.; Yoo D. J.; Elizabeth R., "High ion and lower molecular transportation of the poly vinylidene fluoride-hexa fluoro propylene hybrid membranes for the high temperature and lower humidity direct methanol fuel cell applications." J. Power Sources 195, 5922-5928 (2010).   DOI
2 Yoo D. J.; Hyun S. H.; Kim A. R.; Kumar G. G.; Nahm K. S., "Novel sulfonated poly (arylene biphenylsulfone ether) copolymers containing bisphenylsulfonyl biphenyl moiety: structural, thermal, electrochemical and morphological characteristics." Polym. Int., 60, 85-92 (2011).   DOI
3 Heitner-Wirguin C., "Recent advances in perfluorinated ionomer membranes: structure, properties and applications", J. Membrane Science, 120, 1-33 (1996).   DOI
4 Mochizuki S.; Zydney A. L., "Theoretical analysis of pore size distribution effects on membrane transport", J. Membrane Science, 82(3), 211-228 (1993).   DOI
5 Schonberger F.; Hein M.; Kerres J., "Preparation and characterization of sulfonated partially fluorinated statistical poly (arylene ether sulfone)s and their blends with PBI", Solid State Ionics, 178, 547-554 (2007).   DOI
6 Smitha B.; Sridhar S.; Khan A. A., "Solid polymer electrolyte membranes for fuel cell applications - a review", J. Membrane Science, 259, 10-26 (2005).   DOI   ScienceOn
7 Panero S.; Fiorenza P.; Navarra M. A.; Romanowska J.; Scrosati B. "Silica-added, composite poly (vinyl alcohol) membranes for fuel cell application", J. Electrochem. Soc., A2400-2405 (2005).
8 Erno P., "Structure determination of organic compounds: Tables of spectral data", Pretsch E; Buhlmann P; Affolter C, 3rd completely revised and enlarged English edition, Springer, Berlin, 2000, 245-312.
9 Yang T. "Composite membrane of sulfonated poly (etheretherketone) and sulfated poly (vinyl alcohol) for use in direct methanol fuel cells", J. Membrane Science, 221-226 (2009).
10 Harrison W. L.; Wang F.; Mecham J. B.; Bhanu V. A.; Hill E.; Kim Y. S.; McGrath J. E., "Influence of the bisphenol structure on the direct synthesis of sulfonated poly (arylene ether) copolymers I", J. Power Sources: Part A: Polymer Chemistry, 41, 2264-2276 (2003).   DOI
11 Kopitzke R. W.; Linkous C. A., "Conductivity and water uptake of aromatic-based proton exchange membrane electrolyte" J. Electrochem. Soc., 147(5), 1677-1681 (2000).   DOI
12 Bae J. M.; Honma, I.; Murata M.; Yamaoto T.; Rikukawa M.; Ogata N. "Properties of selected sulfonated polymers as proton-conduction electrolytes for polymer elcctrolyte fuel cell", Solid State Ionics, 147, 189-194 (2002).   DOI
13 Escudero M. J.; Hontanon E.; Schwartz S.; Boutonnet M; Daza L. "Development performance characterization of new electro catalysts for PEMFC", J. Power Sources, 106, 206- 214 (2002).   DOI
14 Kreuer K. D., "On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells", Membrane Journal, 185, 29-39 (2001).   DOI
15 Mauritz K. A; Moore R. B, "State of Understanding of Nafion", Chem. Rev, 104, 4535-4586 (2004).   DOI
16 Ramani V.; Kunz H. R; Fenton J. M, "Investigation of Nafion/HPA composite membranes for high temperature/low relative humidity PEMFC operation", J. Membrane Science, 232, 31-44 (2004).   DOI
17 Vielstich W.; Lamm A.; Gasteiger H. A, "Handbook of Fuel Cells", Wiley, 2003.
18 Li Q.; He R.; Jensen Q. O.; Bjerrum N. J., "Approaches and recent development of polymer electrolyte membranes for fuel cells operating above $100{^{\circ}C}$", Chem. Mater, 15, 4896- 4915 (2003).   DOI
19 Ezzell B. R.; Carl W. P.; Mod W. A., US Patent 4,358,412, 1982.
20 Connollym D. J.; Gresham W. F., US Patent 3,282,875, 1966.