• Title/Summary/Keyword: Cross-layer

Search Result 1,216, Processing Time 0.027 seconds

An efficient microscopic technique for aleurone observation with an entire kernel cross-section in maize (Zea mays L.)

  • Jae-Hong Kim;Ji Won Kim;Gibum Yi
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.645-652
    • /
    • 2023
  • The aleurone layer in maize is crucial as it contains essential nutrients such as minerals, vitamins, and high-quality proteins. While most of the maize varieties are known to possess a single aleurone layer, several multi-aleurone layer mutants and landraces have been suggested for hierarchical genetic control of aleurone development. Conventional microscopy analysis often involves using immature seeds or sampling only a portion of the kernel sample, and whole kernel section analysis using a microtome is technically difficult and time-consuming. Additionally, the larger size of maize kernels posed challenges for comprehensive cross-sectional analysis compared to other cereal crops. Consequently, this study aimed to develop an efficient method to comprehensively understand the aleurone layer characteristics of the entire cross-section in maize. Through observations of diverse maize genetic resources, we confirmed irregular aleurone layer patterns in those with multiple aleurone layers, and we discovered a landrace having multiple aleurone layers. By selectively identifying genetic resources with multiple aleurone layers, this method may contribute to efficient breeding processes in maize.

Low-Latency Handover Scheme Using Exponential Smoothing Method in WiBro Networks (와이브로 망에서 지수평활법을 이용한 핸드오버 지연 단축 기법)

  • Pyo, Se-Hwan;Choi, Yong-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.3
    • /
    • pp.91-99
    • /
    • 2009
  • Development of high-speed Internet services and the increased supply of mobile devices have become the key factor for the acceleration of ubiquitous technology. WiBro system, formed with lP backbone network, is a MBWA technology which provides high-speed multimedia service in a possibly broader coverage than Wireless LAN can offer. Wireless telecommunication environment needs not only mobility support in Layer 2 but also mobility management protocol in Layer 3 and has to minimize handover latency to provide seamless mobile services. In this paper, we propose a fast cross-layer handover scheme based on signal strength prediction in WiBro environment. The signal strength is measured at regular intervals and future value of the strength is predicted by Exponential Smoothing Method. With the help of the prediction, layer-3 handover activities are able to occur prior to layer-2 handover, and therefore, total handover latency is reduced. Simulation results demonstrate that the proposed scheme predicts that future signal level accurately and reduces the total handover latency.

  • PDF

Study on the Mechanical Properties of Tropical Hybrid Cross Laminated Timber Using Bamboo Laminated Board as Core Layer

  • GALIH, Nurdiansyah Muhammad;YANG, Seung Min;YU, Seung Min;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.245-252
    • /
    • 2020
  • This study was performed to analyze the mechanical properties of tropical hybrid cross-laminated timber (CLT) with bamboo laminated board as the core layer in order to evaluate the possibility of its use as a CLT material. Bamboo board was used as the core layer and the tropical species Acacia mangium willd., from Indonesia, was used as the lamination in the outer layer. The modulus of elasticity (MOE), modulus of rupture (MOR), and shear strength of the hybrid CLT were measured according to APA PRG 320-2018 Standard for Performance-Rated Cross-Laminated Timber. The results show that the bending MOE of the hybrid CLT was found to be 2.76 times higher than SPF (Spruce Pine Fir) CLT. The reason why the high MOE value was shown in bamboo board and hybrid CLT applied bamboo board is because of high elasticity of bamboo fiber. However, the shear strength of the hybrid CLT was 0.8 times lower than shear strength of SPF CLT.

Efficient Scheduling Method based Cross-Layer on Mobile Communication Multimedia Environments (이동통신 멀티미디어 환경에서의 효율적인 크로스레이어 기반의 스케줄링 기법)

  • Kim, Joo-Seok;Kim, Hyung-Jung;Jo, Gweon-Do;Kim, Kyung-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.10
    • /
    • pp.1-9
    • /
    • 2007
  • Allocation and management of the resource is very important in wireless networks because the wireless resource is limited. Therefore, the importance of designing cross layer, which adapt between different layers, is on the rise. In this paper, we investigate the scheduling techniques of the cross layer. This paper researches conventional scheduling methods and proposes the complementary scheduling method. On multimedia environment, the scheduling method must be applied variably because of offering variable services. Therefore, this paper proposes the new scheduling method according to the variable services. The proposed method shows that utility efficiency of the wireless resource more excellent than the conventional method through the simulations.

A Fundamental Experiment on the Stabilization of a Methane-Air Edge Flame in a Cross-Flowing Mixing Layer in a Narrow Channel (좁은 채널 내부의 수직 혼합 경계층에 형성된 메탄-공기 에지-화염의 안정화 기초 실험)

  • Lee, Min-Jung;Kim, Nam-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.527-534
    • /
    • 2009
  • Flame stabilization characteristics were experimentally investigated in a fuel-air cross flowing mixing layer. A combustor consists of a narrow channel of air steam and a cross flowing fuel. Depending on the flow rates of methane and air, flame can be stabilized in two modes. First is an attached flame which is formulated at the backward step where the methane and air streams meet. Second is a lifted-flame which is formulated within the mixing layer far down steam from backward step. The heights and flame widths of the lifted flames were measured. Flame shapes of the lifted flames were similar to an ordinary edge flame or a tribrachial flame, and their behavior could be explained with the theories of an edge flame. With the increase of the mixing time between fuel and air, the fuel concentration gradient decreases and the flame propagation velocity increases. Thus the flame is stabilized where the flow velocity is matched to the flame propagation velocity in spite of a significant disturbance in the fuel mixing and heat loss within the channel. This study provides many experimental results for a higher fuel concentration gradient, and it can also be helpful for the development and application of a smaller combustor.

An Effective Cross Layer-based Multimedia Transmission Algorithm over Multi-hop Mobile Ad Hoc Network (다중 홉 이동 애드 혹 네트워크에서 크로스레이어 기반의 효과적인 멀티미디어 전송 알고리즘)

  • Lee, Gyeong-Cheol;Kim, Wan;Song, Hwang-Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5A
    • /
    • pp.474-481
    • /
    • 2010
  • In this paper, we present an effective cross layer-based video transmission algorithm over multi-hop mobile ad hoc networks. The proposed algorithm selects the most efficient PHY mode of wireless LAN multi-rate service at each node in a distributed way based on the available information at application, MAC, and physical layers in order to minimize end-to-end delay and maintain packet loss rate in tolerable range at the receiver. Finally, experimental results are provided to show superior performance of the proposed algorithm.

Cross Layer Optimal Design with Guaranteed Reliability under Rayleigh block fading channels

  • Chen, Xue;Hu, Yanling;Liu, Anfeng;Chen, Zhigang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3071-3095
    • /
    • 2013
  • Configuring optimization of wireless sensor networks, which can improve the network performance such as utilization efficiency and network lifetime with minimal energy, has received considerable attention in recent years. In this paper, a cross layer optimal approach is proposed for multi-source linear network and grid network under Rayleigh block-fading channels, which not only achieves an optimal utility but also guarantees the end-to-end reliability. Specifically, in this paper, we first strictly present the optimization method for optimal nodal number $N^*$, nodal placement $d^*$ and nodal transmission structure $p^*$ under constraints of minimum total energy consumption and minimum unit data transmitting energy consumption. Then, based on the facts that nodal energy consumption is higher for those nodes near the sink and those nodes far from the sink may have remaining energy, a cross layer optimal design is proposed to achieve balanced network energy consumption. The design adopts lower reliability requirement and shorter transmission distance for nodes near the sink, and adopts higher reliability requirement and farther transmission distance for nodes far from the sink, the solvability conditions is given as well. In the end, both the theoretical analysis and experimental results for performance evaluation show that the optimal design indeed can improve the network lifetime by 20-50%, network utility by 20% and guarantee desire level of reliability.

Cross-layer Video Streaming Mechanism over Cognitive Radio Ad hoc Information Centric Networks

  • Han, Longzhe;Nguyen, Dinh Han;Kang, Seung-Seok;In, Hoh Peter
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3775-3788
    • /
    • 2014
  • With the increasing number of the wireless and mobile networks, the way that people use the Internet has changed substantively. Wireless multimedia services, such as wireless video streaming, mobile video game, and mobile voice over IP, will become the main applications of the future wireless Internet. To accommodate the growing volume of wireless data traffic and multimedia services, cognitive radio (CR) and Information-Centric Network (ICN) have been proposed to maximize the utilization of wireless spectrum and improve the network performance. Although CR and ICN have high potential significance for the future wireless Internet, few studies have been conducted on collaborative operations of CR and ICN. Due to the lack of infrastructure support in multi-hop ad hoc CR networks, the problem is more challenging for video streaming services. In this paper, we propose a Cross-layer Video Streaming Mechanism (CLISM) for Cognitive Radio Ad Hoc Information Centric Networks (CRAH-ICNs). The CLISM included two distributed schemes which are designed for the forwarding nodes and receiving nodes in CRAH-ICNs. With the cross-layer approach, the CLISM is able to self-adapt the variation of the link conditions without the central network controller. Experimental results demonstrate that the proposed CLISM efficiently adjust video transmission policy under various network conditions.

Cross-Layer Resource Allocation Scheme for WLANs with Multipacket Reception

  • Xu, Lei;Xu, Dazhuan;Zhang, Xiaofei;Xu, Shufang
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.184-193
    • /
    • 2011
  • Tailored for wireless local area networks, the present paper proposes a cross-layer resource allocation scheme for multiple-input multiple-output orthogonal frequency-division multiplexing systems. Our cross-layer resource allocation scheme consists of three stages. Firstly, the condition of sharing the subchannel by more than one user is studied. Secondly, the subchannel allocation policy which depends on the data packets' lengths and the admissible combination of users per subchannel is proposed. Finally, the bits and corresponding power are allocated to users based on a greedy algorithm and the data packets' lengths. The analysis and simulation results demonstrate that our proposed scheme not only achieves significant improvement in system throughput and average packet delay compared with conventional schemes but also has low computational complexity.

Cross-Layer Reduction of Wireless Network Card Idle Time to Optimize Energy Consumption of Pull Thin Client Protocols

  • Simoens, Pieter;Ali, Farhan Azmat;Vankeirsbilck, Bert;Deboosere, Lien;Turck, Filip De;Dhoedt, Bart;Demeester, Piet;Torrea-Duran, Rodolfo;Perre, Liesbet Van der;Dejonghe, Antoine
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.75-90
    • /
    • 2012
  • Thin client computing trades local processing for network bandwidth consumption by offloading application logic to remote servers. User input and display updates are exchanged between client and server through a thin client protocol. On wireless devices, the thin client protocol traffic can lead to a significantly higher power consumption of the radio interface. In this article, a cross-layer framework is presented that transitions the wireless network interface card (WNIC) to the energy-conserving sleep mode when no traffic from the server is expected. The approach is validated for different wireless channel conditions, such as path loss and available bandwidth, as well as for different network roundtrip time values. Using this cross-layer algorithm for sample scenario with a remote text editor, and through experiments based on actual user traces, a reduction of the WNIC energy consumption of up to 36.82% is obtained, without degrading the application's reactivity.