• Title/Summary/Keyword: Cross-layer

Search Result 1,233, Processing Time 0.03 seconds

The Scheduling Problem in Wireless Networks

  • Pantelidou, Anna;Ephremides, Anthony
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.489-499
    • /
    • 2009
  • We describe the fundamental issue of scheduling the allocation of wireless network resources and provide several formulations of the associated problems. The emphasis is on scheduling transmission attempts. We place this problem in the context of existing approaches, like information theoretic and traditional network theoretic ones, as well as novel avenues that open up the possibility of addressing this issue for non-stationary and non-ergodic environments. We summarize concrete recent results for specific special cases that include unicast and multicast traffic, different objective functions, and reduced complexity versions of the problem. We conclude with some thoughts for future work. We identify and single out the cross-layer nature of the problem and include a simple physical-layer criterion in what is mostly a medium access control (MAC) problem.

Evolution of Cube Texture in the Nickel-Silver-Stainless steel Multi-layer Sheet

  • Lee, Hee-Gyoun;Jung, Yang-Hong;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • v.1 no.1
    • /
    • pp.51-55
    • /
    • 1999
  • A Ni/Ag/Stainless steel 310S(SS310S) multi-layer sheet has been fabricated by a combination of vacuum brazing, cold rolling and texture annealing processes. After heat-treating the thin Ni/Ag/SS310S multi-layer sheet at $900^{\circ}C$ for 2h, development of (100)<001>cube texture on Ni surface was revealed by (111) pole figure. Quantitative chemical analysis was made by EPMA for the cross-section of the Ni/Ag/SS310S multi-layer sheet. EPMA results showed that Ag diffusion into the Ni layer, which may suppress the cube texture development, was negligible. A small amount of Cr atoms were detected in the Ni layer. It showed that Ag can be used as a chemical barrier of alloying element atoms in Ni layer for the Ni/Ag/SS310S multi-layer sheet and a strong cube texture was developed for the Ni layer in the Ni/Ag/SS310S multi-layer sheet.

  • PDF

Glucose Diffusion Limiting Membrane Based on Polyethyleneimine (PEI) Hydrogel for the Stabilization of Glucose Sensor

  • Kim, Suk-Joon;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.225-229
    • /
    • 2021
  • Commercially available continuous glucose sensors require the operation stability for more than two weeks. Typically, the sensor comprises a sensing layer and an over-coating layer for the stable operation inside the body. In the sensing layer, enzymes and mediators are cross-linked together for the effective sensing of the glucose. The over-coating layer limits the flux of glucose and works as a biocompatible layer to the body fluids. Here, we report the simple preparation of the flux-limiting layer by the condensation of polyethyleneimine (PEI), tri-epoxide linker, and trimethylolpropane triglycidyl ether (PTGE). The sensor is constructed by a layer-by-layer drop-coating of the sensing layer containing glucose dehydrogenase and the PEI-derived blocking layer. It is stable for more than 14 days, which is enough for the sensor in the continuous monitor glucose monitoring (CGM) system.

A Cross-Layer based Video Transmission Scheme using Efficient Bandwidth Estimation in IEEE 802.11e EDCA (IEEE 802.11e EDCA에서 효율적인 대역폭 측정을 통한 Cross-Layer 기반의 비디오 전송 기법)

  • Shin, Pil-Gyu;Lee, Sun-Hun;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.3
    • /
    • pp.173-182
    • /
    • 2008
  • Promoting quality of streaming service in wireless networks has attracted intensive research over the years. Instable wireless channel condition causes high transmission delay and packet loss, due to fading and interference. Therefore, they lead to degrade quality of video streaming service. The IEEE 802.11 Working Group is currently working on a new standard called IEEE 802.11e to support quality of service in WLANs. And several schemes were proposed in order to guarantee QoS. However, they are not adaptable to network condition. Accordingly, they suffered video quality degradation, due to buffer overflow or packet loss. In this paper, to promote quality of video streaming service in WLANs, we propose a cross-layer architecture based on IEEE 802.11e EDCA model. Our cross-layer architecture provides differentiated transmission mechanism of IEEE 802.11e EDCA based on priority of MPEG-4 video frames and adaptively controls the transmission rate by dropping video frames through the efficient bandwidth estimation based on distinction of each AC. Through the simulation, proposed scheme is shown to be able to improve end-to-end qualify for video streaming service in WLANs.

CFD Analysis on a Flow Channel of a Bipolar Plate with Varying Cross-sectional Area in a PEM Fuel Cell (PEM 연료전지용 Bipolar Plate의 변화단면 유로에 대한 CFD 해석)

  • Yang, Dong-Jin;Park, Woon-Jean
    • New & Renewable Energy
    • /
    • v.3 no.3
    • /
    • pp.14-19
    • /
    • 2007
  • A flow channel model of a bipolar plate with varying cross-sectional area was newly designed for improving performance and efficiency of a PEM fuel cell stack. As a result, the varying cross-sectional area model showed poor uniformity in velocity distribution, however, maximum velocity in the flow path is about 30% faster than that of the uniform cross-sectional area model. The proposed varying cross-sectional area model is expected to diffuse operating fluids more easily into diffusion layer because it has relatively higher values in pressure distribution compared with other flow channel models. It is expected that the implementation of the varying cross-sectional area model can reduce not only the mass transport loss but also the activation loss in a PEM fuel cell, and open circuit voltage of a fuel cell can thus be increased slightly.

  • PDF

Static behavior of Kiewitt6 suspendome

  • Li, Kena;Huang, Dahai
    • Structural Engineering and Mechanics
    • /
    • v.37 no.3
    • /
    • pp.309-320
    • /
    • 2011
  • As a new type of large-span space structure, suspendome is composited of the upper single-layer reticulated shell and the lower cable-strut system. It has better mechanical properties compared to single-layer reticulated shell, and the overall stiffness of suspendome structure increases greatly due to the prestress of cable. Consequently, it can cross a larger span reasonably, economically and grandly with high rigidity, good stability and simple construction. For a better assessment of the advantages of mechanical characteristic of suspendome quantitatively, the static behavior of Kiewitt6 suspendome was studied by using finite element method, and ADINA was the software application to implement the analysis. By studying a certain suspendome, the internal forces, deformation and support constrained forces of the structure were obtained in this paper. Furthermore, the influences of parameters including prestress, stay bar length, cross-sectional area and rise-to-span ratio were also discussed. The results show that the increase of prestress and vertical stay bar length can improve the stiffness of suspendome; Cross-sectional area has nearly no impact on the static behavior, and the rise-to-span ratio is the most sensitive parameter.

Design of Ulta-short Fused Vertical Coupler Switches Composed of Two Sections (두 개의 영역으로 구성된 매우 짧은 길이를 가지는 융합된 수직 방향성 결합 스위치 설계)

  • Cho, Sung-Chan;Seol, Jong-Chol;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.10
    • /
    • pp.42-50
    • /
    • 2000
  • We show that both cross and bar states with high extinction ratios larger than 30dB can be achieved at eh same ends of ultra-short fused vertical directional coupler switches with two sections by changing the refractive indices of cores and inner cladding layers less than 1%. Based on the calculation of extinction ratios of cross state and bar state for various refractive index and thickness of inner cladding layer and core using the improved coupled mode theory and beam propagation method, the guidelines for design to achieve large tolerances in refractive indices of core and inner cladding layer in fused vertical directional coupler switches are presented.

  • PDF

Flexure of cross-ply laminated plates using equivalent single layer trigonometric shear deformation theory

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.867-891
    • /
    • 2014
  • An equivalent single layer trigonometric shear deformation theory taking into account transverse shear deformation effect as well as transverse normal strain effect is presented for static flexure of cross-ply laminated composite and sandwich plates. The inplane displacement field uses sinusoidal function in terms of thickness coordinate to include the transverse shear deformation effect. The cosine function in thickness coordinate is used in transverse displacement to include the effect of transverse normal strain. The kinematics of the present theory is much richer than those of the other higher order shear deformation theories, because if the trigonometric term (involving thickness coordinate z) is expanded in power series, the kinematics of higher order theories (which are usually obtained by power series in thickness coordinate z) are implicitly taken into account to good deal of extent. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. The closed-form solutions of simply supported cross-ply laminated composite and sandwich plates have been obtained. The results of present theory are compared with those of the classical plate theory (CPT), first order shear deformation theory (FSDT), higher order shear deformation theory (HSDT) of Reddy and exact three dimensional elasticity theory wherever applicable. The results predicted by present theory are in good agreement with those of higher order shear deformation theory and the elasticity theory.

High-Efficiency a-Si:H Solar Cell Using In-Situ Plasma Treatment

  • Han, Seung Hee;Moon, Sun-Woo;Kim, Kyunghun;Kim, Sung Min;Jang, Jinhyeok;Lee, Seungmin;Kim, Jungsu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.230-230
    • /
    • 2013
  • In amorphous or microcrystalline thin-film silicon solar cells, p-i-n structure is used instead of p/n junction structure as in wafer-based Si solar cells. Hence, these p-i-n structured solar cells inevitably consist of many interfaces and the cell efficiency critically depends on the effective control of these interfaces. In this study, in-situ plasma treatment process of the interfaces was developed to improve the efficiency of a-Si:H solar cell. The p-i-n cell was deposited using a single-chamber VHF-PECVD system, which was driven by a pulsed-RF generator at 80 MHz. In order to solve the cross-contamination problem of p-i layer, high RF power was applied without supplying SiH4 gas after p-layer deposition, which effectively cleaned B contamination inside chamber wall from p-layer deposition. In addition to the p-i interface control, various interface control techniques such as thin layer of TiO2 deposition to prevent H2 plasma reduction of FTO layer, multiple applications of thin i-layer deposition and H2 plasma treatment, H2 plasma treatment of i-layer prior to n-layer deposition, etc. were developed. In order to reduce the reflection at the air-glass interface, anti-reflective SiO2 coating was also adopted. The initial solar cell efficiency over 11% could be achieved for test cell area of 0.2 $cm^2$.

  • PDF

Radar Cross Section Reduction by Planar Array of Dielectric Barrier Discharge Plasma under Atmospheric Pressure (평면 배열 유전체 장벽 방전 플라즈마 발생기의 대기압에서의 레이다 단면적 감소 효과)

  • Kim, Yuna;Kim, Sangin;Kim, Doo-Soo;Lee, Yongshik;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.8
    • /
    • pp.646-652
    • /
    • 2017
  • The effect of plasma on mono-static radar cross section under atmospheric pressure is demonstrated when the dielectric barrier discharge actuator has plasma layer. The volume of plasma layer is increased by using planar array of electrodes. Because the incident wave has electric field which is perpendicular to the electrode array, the undesired effect on radar cross section caused by structure of plasma actuator is minimized. In experiments, mono-static radar cross section is measured at the frequencies from 2 GHz to 25 GHz. The generated plasma reduces the radar cross section at frequencies above 18 GHz, and the amount of reduction reaches to 8 dB in maximum. The reduction can be controlled by changing the peak-to-peak voltage from high voltage generator. The result shows the possibility of plasma as a flexible radar cross section controller.