Browse > Article
http://dx.doi.org/10.33961/jecst.2020.01487

Glucose Diffusion Limiting Membrane Based on Polyethyleneimine (PEI) Hydrogel for the Stabilization of Glucose Sensor  

Kim, Suk-Joon (Department of Chemistry, Sogang University)
Shin, Woonsup (Department of Chemistry, Sogang University)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.2, 2021 , pp. 225-229 More about this Journal
Abstract
Commercially available continuous glucose sensors require the operation stability for more than two weeks. Typically, the sensor comprises a sensing layer and an over-coating layer for the stable operation inside the body. In the sensing layer, enzymes and mediators are cross-linked together for the effective sensing of the glucose. The over-coating layer limits the flux of glucose and works as a biocompatible layer to the body fluids. Here, we report the simple preparation of the flux-limiting layer by the condensation of polyethyleneimine (PEI), tri-epoxide linker, and trimethylolpropane triglycidyl ether (PTGE). The sensor is constructed by a layer-by-layer drop-coating of the sensing layer containing glucose dehydrogenase and the PEI-derived blocking layer. It is stable for more than 14 days, which is enough for the sensor in the continuous monitor glucose monitoring (CGM) system.
Keywords
Continuous Glucose Monitoring System (CGMS); Enzymatic Glucose Sensor; Diffusion Limiting Membrane;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 D. Rodbard, Diabetes Technol. Ther. 2016, 18(S2), S2-3.   DOI
2 Z.Mian, K. L. Hermayer and A. Jenkins, Am. J. Med. Sci. 2019, 358(5), 332-339.   DOI
3 S. Vashist, Diagnostics 2013, 3(4), 385-412.   DOI
4 A. Facchinetti, G. Sparacino and C. Cobelli, J. Diabetes Sci. Technol. 2007, 617-623.
5 D. B. Keenan, J. J. Mastrototaro, G. Voskanyan and G. M. Steil, J. Diabetes Sci. Technol. 2009, 3(5), 1207-1214.   DOI
6 A. Heller and B. Feldman, Acc. Chem. Res. 2010, 43(7), 963-973.   DOI
7 R. Sternberg, D. S. Bindra, G. S Wilson and D. R. Thevenot, Anal. Chem., 1988, 60(24), 2781-2786.   DOI
8 S.-J. Kim, Y. Quan, E. Ha and W. S. Shin, J. Electrochem. Sci. Technol. 2021, 12(1), 33-37.   DOI
9 I. Becerik, S. Suzer and F. J. Kadirgan, Electroanal. Chem., 1999, 476(2), 171-176.   DOI
10 T. Kulkarni and G. Slaughter, Membrane(Basel), 2016, 6(4), 55   DOI
11 D. J. Harrison, R. F. B. Turner and H. P. Baltes, Anal. Chem., 1988, 60(19), 2002-2007.   DOI
12 A. Fraleoni-Morgera, B. Ballarin, A. Filippini, D. Frascaro, C. Piana and L.Setti, Biosens. Bioelectron. 2005, 20(10), 2019-2026   DOI
13 M. H. Freeman, J. R. Hall and M. C. Leopold, Anal. Chem., 2013, 85(8), 4057-4065.   DOI
14 H. Jo, H. Piao and Y. Son, J. Electrochem. Sci. Technol. 2013, 4(1), 41-45.   DOI
15 C. J. Yuan, C. L. Hsu, S. C. Wang and K. S. Chang, Electroanalysis 2005, 17(24), 2239-2245.   DOI
16 O. M. Schuvailo, O. O. Soldatkin, A. Lefebvre, R. Cespuglio and A. P. Soldatkin, Anal. Chim. Acta 2006, 573, 110-116.   DOI
17 B. Yu, N. Long, Y. Moussy and F. Moussy, Biosens. Bioelectron. 2006, 21(12), 2275-2282.   DOI
18 A. Koh, D. A. Riccio, A. W. Carpenter, S. P. Nichols and M. H. Schoenfisch, Biosens. Bioelectron. 2011, 28(1), 17-24.   DOI
19 J. E. Song, Z. Hong, R. K. Nagarale and W. S. Shin, J. Electrochem. Sci. Technol. 2011, 2(3), 163-167.   DOI
20 X. Zeng, and E. Ruckenstein, J. Memb. Sci., 1998, 148(2), 195-205.   DOI
21 H. D. Jirimali, D. Saravanakumar and W. Shin, J. Electrochem. Sci. Technol. 2018, 9(3), 169-175.   DOI
22 T. J. Ohara, R. Rajagopalan and A. Heller, Anal. Chem. 1993, 65(23), 3512-3517.   DOI
23 Q. Gao and X. Yang, Chem. Commun. 2004, 1, 30-31.
24 J. H. Han, J. D. taylor, D. S. Kim, Y. S. Kim, Y. T. Kim, G. S. Cha and H. Nam, Sensors Actuators, B Chem., 2007, 123(1), 384-390.   DOI
25 M. M. Rahman and J. J. Lee, J. Electrochem. Sci. Technol. 2019, 10(2), 185-195.   DOI