• Title/Summary/Keyword: Cross-interaction constants

Search Result 31, Processing Time 0.025 seconds

Solvolysis of 2-Phenylethyl Benzenesulfonates in Methanol-Water Mixtures

  • Han, Goang-Lae;Park, Jin-Ha;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.5
    • /
    • pp.393-398
    • /
    • 1987
  • Solvolyses of 2-phenylethyl benzenesulfonates have been studied in methanol-water mixtures. Cross interaction constants, $\rho_{YZ}$, between substituents Y in the substrate and Z in the leaving group indicated somewhat closer distance between the two substituents than expected for the reaction system, which supported the involvment of phenyl group assisted pathway in the solvolysis. A smaller magnitude of $\rho_{YZ}$for MeOH was interpreted as the enhencement of solvent assisted pathway since MeOH is more nucleophilic than $H_2O$. Other selectivity parameters, Winstein coefficient m, Hammett's $\rho_Y^{+_Y}$ and $\rho_Z$, as well as activation parameters supported the participation of aryl assisted and aryl unassisted pathways in the $S_{N^2}$ process of the solvolysis reaction.

Kinetic Isotope Effects in the Nucleophilic Substitution Reactions of Benzyl- and 1-Phenylethyl -benzenesulfonates with Deuterated Aniline Nucleophiles

  • Lee, Ik-Choon;Koh, Han-Joong;Lee, Bon-Su;Lee, Hai-Whang;Choi, Jae-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.5
    • /
    • pp.435-438
    • /
    • 1990
  • Primary and secondary ${\alpha}$-deuterium kinetic isotope effects are determined with deuterated aniline nucleophiles in the nucleophilic substitution reactions of benzyl benzenesulfonates and 1-phenylethyl benzenesulfonates in acetonitrile at 30.0^{\circ}C. The $k_H/k_D$ values support our previous conclusions regarding the transition state structures proposed for the two reactions based on the cross-interaction constants ${\rho}_{ij}$; the former is a typical $S_N2$ reaction whereas in the latter the four-center transition state may be involved.

Kinetics and Mechanism of the Anilinolysis of Dibutyl Chlorophosphate in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.663-669
    • /
    • 2012
  • The nucleophilic substitution reactions of dibutyl chlorophosphate (3) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $55.0^{\circ}C$. The obtained deuterium kinetic isotope effects (DKIEs; kH/kD) are secondary inverse ($k_H/k_D$ = 0.86-0.97) with the strongly basic anilines while primary normal ($k_H/k_D$ = 1.04-1.10) with the weakly basic anilines. The DKIEs, steric effects of the two ligands, activation parameters, cross-interaction constants, variation trends of the kH/kD values with X, and mechanism are discussed for the anilinolyses of the nine ($R_1O$)($R_2O$)P(=O)Cl-type chlorophosphates. A concerted mechanism is proposed with a backside nucleophilic attack transition state for the strongly basic anilines and with a frontside attack involving a hydrogen-bonded four-center-type transition state for the weakly basic anilines on the basis of the magnitudes, secondary inverse and primary normal, and variation trends of the $k_H/k_D$ values with X.

Nucleophilic Substitution Reactions of Aryl Thiophene-2-carbodithioates with Pyridines in Acetonitrile

  • Oh, Hyuck-Keun;Lee, Jae-Myon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.203-206
    • /
    • 2004
  • The kinetics of reactions between Z-aryl thiophene-2-carbodithioates and X-pyridines in acetonitrile at 60.0 $^{\circ}C$ have been investigated. The Bronsted plots obtained for the pyridinolysis of aryl thiophene-2-carbodithioates are curved, with the center of curvature at $pK_a$ ~ 5.2 ($pK_a^{\circ}$). The Bronsted plots for these nucleophilic reactions show a change in slope from a large ( ${\beta}_X{\cong}$0.78-0.87) to a small ( ${\beta}_X{\cong}$0.33-0.35) value, which can be attributed to a change in the rate-determining step from breakdown to formation of a zwitterionic tetrahedral intermediate in the reaction path as the basicity of the pyridine nucleophile increases. A clear-cut change in the crossinteraction constants, ${\rho}_{XZ}$, from +0.92 to -0.23 supports the proposed mechanistic change. The breakpoint at $pK_a$ = 5.2 for R = thiophene ring in the present work is in agreement with those for the pyridinolysis of R = Me and 2-furyl, and attests to the insignificant effects of acyl group, R, on the breakpoint.

Kinetics and Mechanism of Pyridinolyses of Aryl Methyl and Aryl Propyl Chlorothiophosphates in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.483-488
    • /
    • 2014
  • The nucleophilic substitution reactions of Y-aryl methyl (8) and Y-aryl propyl (10) chlorothiophosphates with X-pyridines are studied kinetically in acetonitrile at $35.0^{\circ}C$. The Hammett and Bronsted plots with X in the nucleophiles for both substrates exhibit biphasic concave upwards with a break region between X = 3-Me and H. The obtained values of the cross-interaction constants (${\rho}_{XY}$) are negative with 8 while positive with 10 despite the same free energy correlations with X for both substrates. A stepwise mechanism with a rate-limiting bond formation is proposed with 8, whereas a stepwise mechanism with a rate-limiting leaving group departure from the intermediate is proposed with 10 based on the sign of ${\rho}_{XY}$, negative and positive with 8 and 10, respectively. A frontside nucleophilic attack is proposed with strongly basic pyridines based on the considerably great magnitudes of ${\rho}_X$ and ${\beta}_X$ values while a backside attack is proposed with weakly basic pyridines based on the relatively small magnitudes of ${\rho}_X$ and ${\beta}_X$ for both substrates.

Kinetics and Mechanism of the Aminolysis of Benzenesulfonyl, Benzoyl and Benzyl Halides

  • Byung Choon Lee;Dong Sook Sohn;Ji Hyun Yoon;Sun Mo Yang;Ikchoon Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.621-625
    • /
    • 1993
  • Kinetic studies are conducted for the reactions of Y-benzoyl, Y-benzenesulfonyl and Y-benzyl halides with X-anilines in acetonitrile, and the transition state (TS) structures and their variations with substituents X and Y are discussed. The magnitude of the cross-interaction constants, $\rho$xy, is the largest and the inverse secondary kinetic isotope effect (SKIE), $k_H/k_D$ < 1.0, with deuterated aniline nucleophiles is the smallest for benzoyl fluoride reflecting the tightest TS for this compound. The SKIEs for sulfonyl halides are relatively large due to a relatively large, diffuse nature of the reaction center, S, causing weaker steric hindrance to the vibrations of the two N-H(D) bonds. For benzoyl and sulfonyl halides, the trends in $k_H/k_D$ and $Ir_XI$ variations with $\sigma$Y contradict each other, which is rationalized by the negative charge accumulation on the reaction center, CO and SO$_2$, causing inefficient transfer for the substrate with an electron donating substituent.

Kinetics and Mechanism of Triethylamine Catalysed Michael Addition of Benzenethiol to 1-(2-Nitrovinyl)benzene in Acetonitrile

  • Sarathi, P.A.;Gnanasekaran, C.;Shunmugasundaram, A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.790-794
    • /
    • 2008
  • Nucleophilic addition reaction of benzenethiols (PhSH) to 1-(2-nitrovinyl) benzenes ($\beta$ NS) in the presence of triethylamine (TEA) has been studied in acetonitrile at 25 ${^{\circ}C}$. The rate is first order with respect to [PhSH], [TEA] and [$\beta$ NS]. The reaction is found to proceed with the formation of ion-pair between benzenethiol and TEA. A suitable mechanism with the formation of an adduct between ion-pair and substrate in a slow step followed by its rearrangement to 1,2-addition product in a fast step has been proposed and corresponding rate law derived. From the rate law, the rate constants for the interaction between ion-pair and $\beta$NS have been evaluated. Interestingly, in both para-substituted substrates and benzenethiols the rate increases with the electron-withdrawing power of the substituents. The positive sign of $\rho_x$ in benzenethiols has been explained. The magnitude of cross-interaction constant, $\rho_{xy}$ is small (0.08). The magnitude of the Hammett $\rho_x$ values is higher than that of the Bronsted, $\beta_x$ values for benzenethiols. The kinetic isotope effect, $k_H/k_D$, is found to be greater than unity. A suitable transition state with simultaneous formation of $C_\beta$ -H and $B_\alpha$ -S bonds involving the ion-pair and $\beta$NS in a single concerted step has been proposed to account for these observations.

Kinetics and Mechanism of the Pyridinolysis of Aryl Ethyl Chlorothiophosphates in Acetonitrile

  • Adhikary, Keshab Kumar;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3947-3951
    • /
    • 2011
  • The nucleophilic substitution reactions of Y-aryl ethyl chlorothiophosphates with X-pyridines are studied kinetically in acetonitrile at $55.0^{\circ}C$. The Hammett and Bronsted plots for substituent X variations in the nucleophiles exhibit biphasic concave upwards with a break point at X = 3-Me. The substituents of X = 4-CN and 4-Ac show great positive deviations from both the Hammett and Bronsted plots. The Hammett plots for substituent Y variations in the substrates exhibit biphasic concave upwards with a minimum point at Y = H. The obtained values of the cross-interaction constants (${\rho}_{XY}$) are all in spite of the biphasic free energy correlations for both substituent X and Y variations, since the ${\rho}_X$values with both the strongly and weakly basic pyridines are almost constant. A stepwise mechanism with a rate-limiting leaving group departure from the intermediate is proposed where the distance between X and Y does not vary from the intermediate to the second transition state. A frontside attack is proposed with the strongly basic pyridines based on the considerably great magnitudes of ${\rho}_X$ and ${\beta}_X$ values and a backside attack is proposed with the weakly basic pyridines based on the relatively small magnitudes of ${\rho}_X$ and ${\beta}_X$. The positive deviations of the two strong ${\pi}$-acceptor parasubstituents, X = 4-Ac and 4-CN, from both the Hammett and Bronsted plots are rationalized by the great extents of bond formation and breaking.

Nucleophilic Substitution Reactions of Benzoic Anhyrides with Aniline in Methanol-Acetonitrile Mixtures (메탄올-아세토니트릴 혼합용매에서 벤조산 무수물과 아닐린의 친핵성 치환반응)

  • Lee, Byung Choon;Shin, Young Kook;Lee, Seung Woo;Lee, Ik Choon;Lee, Won Heui
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.2
    • /
    • pp.69-76
    • /
    • 1997
  • Kinetic studies for the nucleophilic substitution reactions of the benzoic anhydrides with anilines in methanol-acetonitrile mixtures at$35.0{\circ}C$have been carried out in order to elucidate the reaction mechanism. Individual rate constants$k_{XY}$and$k_{XZ}$were decided from the ratios of the reaction products for the competitive substitution reaction at either one of the two carbonyl carbons in benzoic anhydride. Transition state structure and reaction mechanism were elucidated by the Hammett$p_x,\;p_y$and$p_z$values and cross interaction constant$p_x\;p_y$and$p_zvalues. The reaction of the benzoic anhydride has been proposed to proceed by a frontside attack$S_N2 $mechanism with four-membered ring transition state from unusually large magnitude of the$ρ_X,\;ρ_{XY},\;ρ_{XZ}$and positive$p_Y$values.

  • PDF

The Search of Pig Pheromonal Ordorants for Biostimulation Control System Technology: IV. Comparative Molecular Similarity Indices Analyses (CoMSIA) on the Binding Affinities between Ligands of 2-(Cyclohexyloxy)-tetrahydrofurane Derivatives and Porcine Ordorant Binding Protein (생물학적 자극 통제 수단으로 활용하기 위한 돼지 페로몬성 냄새 물질의 탐색: IV. 2-(Cyclohexyloxy)tetrahydrofurane 유도체와 Porcine Odorant Binding Protein 사이의 결합 친화력에 관한 비교분자 유사성 지수분석(CoMSIA))

  • Sung, Nack-Do;Park, Chang-Sik;Jang, Seok-Chan;Choi, Kyung-Seob
    • Reproductive and Developmental Biology
    • /
    • v.30 no.3
    • /
    • pp.169-174
    • /
    • 2006
  • To search of a new porcine pheromonal odorants, the comparative molecular similarity indices analysis(CoMSIA) between porcine odorant binding protein(pOBP) as receptor and ligands of green odorants 2-(Cyclohexyloxy)tetrahydrofurane derivatives as substrate molecule were conducted and disscused quantitatively. In the optimized CoMSIA model(I-AI) with chirality($I:\;C_{1'}(R),\;C_2(S)$) in substrate molecules and atom based fit alignment(AE) of the odorants the statistical PLS results showed the best predictability of the binding affinities based on the LOO cross-validated value ${r^2}_{cv.}\;(q^2=0.856)$ and non cross-validated conventional coefficient(${r^2}_{ncv.}=0.964)$). The structural distinctions of the highest active molecules were able to understand from the interaction between pOBP and green odorants in the contour maps with CoMSIA model.