• Title/Summary/Keyword: Cross-flow Turbine

Search Result 88, Processing Time 0.029 seconds

The interaction between helium flow within supersonic boundary layer and oblique shock waves

  • Kwak, Sang-Hyun;Iwahori, Yoshiki;Igarashi, Sakie;Obata, Sigeo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.75-78
    • /
    • 2004
  • Various jet engines (Turbine engine family and RAM Jet engine) have been developed for high speed aircrafts. but their application to hypersonic flight is restricted by principle problems such as increase of total pressure loss and thermal stress. Therefore, the development of next generation propulsion system for hypersonic aircraft is a very important subject in the aerospace engineering field, SCRAM Jet engine based on a key technology, Supersonic Combustion. is supposed as the best choice for the hypersonic flight. Since Supersonic Combustion requires both rapid ignition and stable flame holding within supersonic air stream, much attention have to be given on the mixing state between air stream and fuel flow. However. the wider diffusion of fuel is expected with less total pressure loss in the supersonic air stream. So. in this study the direction of fuel injection is inclined 30 degree to downstream and the total pressure of jet is controlled for lower penetration height than thickness of boundary layer. Under these flow configuration both streams, fuel and supersonic air stream, would not mix enough. To spread fuel wider into supersonic air an aerodynamic force, baroclinic torque, is adopted. Baroclinic torque is generated by a spatial misalignment between pressure gradient (shock wave plane) and density gradient (mixing layer). A wedge is installed in downstream of injector orifice to induce an oblique shock. The schlieren optical visualization from side transparent wall and the total pressure measurement at exit cross section of combustor estimate how mixing is enhanced by the incidence of shock wave into supersonic boundary layer composed by fuel and air. In this study non-combustionable helium gas is injected with total pressure 0.66㎫ instead of flammable fuel to clarify mixing process. Mach number 1.8. total pressure O.5㎫, total temperature 288K are set up for supersonic air stream.

  • PDF

Numerical Study on Heat Transfer and Flow Characteristics of Pin Fin with Swept Airfoil Shape Vortex Generator (후퇴익형 형상의 와류발생기가 있는 핀휜 유동의 전열 및 유동 특성 분석에 관한 수치적 연구)

  • Lee, Changhyeong;Oh, Yeongtaek;Bae, Jihwan;Lee, Deukho;Kim, Kuisoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.28-34
    • /
    • 2019
  • In this study, pin-fin arrays, which are widely used for cooling turbine blades, were studied. The vortex generator in pin-fin arrays is located in front of the circular tube. The cross-section of the vortex generator is NACA-9410. The purpose of this study is to analyze heat transfer performance and flow characteristics of pin-fin arrays. The position of vortex generator is changed with the vertical flow direction on the bottom wall. Pin-fin arrays were calculated with 6000, 10000 and 15000 Reynolds number. The commercial program ANSYS v18.0 CFX and the turbulence model $k-{\omega}$ SST were used. As a result, the heat transfer performance increased up to 5.8% and pressure loss increased less than 1%.

Fluidic Characteristics of Precessing Jet Nozzle Combustor (세차제트노즐 연소기의 유동특성)

  • Lee, Hye-Young;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.1-9
    • /
    • 2007
  • Many processing companies are facing environmental regulations such as decreasing NOx emissions when they by to increase thermal efficiencies of combustor. We study a potential new method that may achieve both increase of thermal efficiency and decrease of NOx emissions. This new concept of burner, the precessing jet burner, is known to significantly reduce pollutants such as NOx emissions and simultaneously increase radial heat transfer. This precessing jet nozzle may increase the combustion efficiency of gas turbine engine. A basic research on characteristics of precessing jet nozzle has been conducted using FLUENT and laser visualization technique. Velocities at He nozzle cross-section are compared with the published experimental results. Precessing jet nozzle with centerbody results in better precessing phenomena.

Numerical Analysis on the Effect of Hole Arrangement on the Film Cooling Effectiveness on the Vane Endwall (터빈 1단 베인 엔드월에서 막냉각 홀 배열에 따른 막냉각 특성 변화)

  • Kim, TaeWoo;Kim, JeongJu;Park, Hee Seung;Ju, Won-Gu;Im, Ju Hyun;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.1
    • /
    • pp.47-57
    • /
    • 2020
  • The present study investigates to improve the film cooling performance on the vane endwall. Numerical simulation was conducted to analyze film cooling characteristics on the vane endwall. Six different hole arrangements were designed considering flow characteristics on the endwall. The results showed that the film cooling effectiveness was low on the pressure side and nozzle throat in the base case, because coolant was deflected from the pressure side to the suction side. On the other hand, when the holes were installed near the pressure side, the film cooling effectiveness was enhanced on the pressure side and nozzle throat, because the coolant was less affected by cross flow. Therefore, the film cooling effectiveness increases about 16% compared to the base hole arrangement.

The Study on the Effects of Breakwater Energy Conversion System by Horizontal Plate Installation (수평판 설치에 따른 방파제형 파력 발전 시스템의 영향에 대한 연구)

  • Jung, Sung-Young;Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.38 no.1
    • /
    • pp.39-44
    • /
    • 2014
  • Due to the oil price is increasing continuously, active researches on sources of renewable energy has been invigorated. Above all, ocean energy has high-usability because of ocean current has high density and large quantity compared to the wind energy. In this paper, efficiency enhancement of the wave power generation was described through horizontal plate installation at the break water wave power generation system that converts the ocean energy into electricity. The power-conversion efficiency can be improved by horizontal plate installation at existing system, but there has been insufficient studies domestically. The purpose of this paper is to analyze about the effects of the horizontal plate installation on the breakwater wave power generation system by wave basin experiment and to propose a position of horizontal plate installation.

Turbulent Heat Transfer and Friction in Four-Wall Convergent/Divergent Square Channels with One Ribbed Wall (한면에 리브가 설치된 4벽면 수축/확대 채널의 난류 열전달과 유체마찰)

  • Ahn, Soo Whan;Lee, Myung Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.773-778
    • /
    • 2015
  • The local heat transfer and pressure drop of developed turbulent flows in convergent/divergent channels with square axial cross-sectional areas were experimentally investigated to improve the channel design, such as a gas turbine cooling system. Square convergent/divergent channels with one ribbed wall were manufactured with a fixed rib height e of 10 mm and a ratio of rib spacing p to height e of 10. The measurement was conducted for Reynolds numbers from 15,000 to 89,000. Convergent, divergent, and straight channels with ratios $D_{ho}/D_{hi}$ of 0.75, 1.33, and 1.0, respectively, are considered. Of the three channel types, the ribbed divergent channel was found to produce the best thermal performance under identical flow rate, pumping power, and pressure loss conditions.

Characteristics of Multi staged Combustion on a Double-cone Partial Premixed Nozzle (이중 콘형 부분 예혼합 GT 노즐의 다단 연소특성)

  • Kim, Han Seok;Cho, Ju Hyeong;Kim, Min Kuk;Hwang, Jeongjae;Lee, Won June
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • Experimental investigations were conducted to understand the multi-staged combustion characteristics of a swirl-stabilized double cone premixed burner nozzle used for industrial gas turbines for power generation. Multi-staged combustion is implemented by injecting the fuel through the existing manifold of the side slots as well as through the apex of the cone with two fuel injection angles which are slanted or axial. NOx and CO emissions, and wall temperature distributions were measured for various fuel distributions and operating conditions. Results show that NOx emissions are decreased when the fuel distribution to the apex is 3% of the total amount of fuel, which is due to more uniform fuel distribution inside the nozzle, hence less hot spots at the flame. NOx emissions are rather increased when the fuel distribution to the apex is 8% of the total amount of fuel for axial fuel injection by occurrence of flash back in premixing zone of burner.

Combustion Characteristics of a Double-cone Partial Premixed Nozzle with Various Fuel hole Patterns (이중 콘형 부분 예혼합 GT 노즐의 연료 분사구 형상 변화에 대한 연소특성)

  • Kim, Han Seok;Cho, Ju Hyeong;Kim, Min Kuk;Hwang, Jeongjae;Lee, Won June
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.25-31
    • /
    • 2020
  • Experimental investigations were conducted to examine the combustion characteristics of a swirl-stabilized double cone premixed burner nozzle used for industrial gas turbines for power generation. Several variants with different fuel injection patterns are tested to compare the combustion characteristics such as NOx and CO emissions, stability, and wall temperature distributions. Main results show that NOx emissions and stability are decreased either when the fuel hole diameter is decreased with the same number of fuel holes, or when the number of fuel holes is reduced with the same total area of fuel holes, both of which are due to a higher penetration of fuel into the air stream. Not only is NOx reduced but also stability is enhanced when the fuel hole diameter varies in an alternating manner with the same total area of fuel holes, showing that NOx reduction is due to a higher penetration of mean fuel injection path while stability enhancement is due to a lowered penetration of minimum fuel injection path.