• Title/Summary/Keyword: Cross-Tension

Search Result 248, Processing Time 0.024 seconds

Free vibration analysis of axially moving laminated beams with axial tension based on 1D refined theories using Carrera unified formulation

  • Daraei, Behnam;Shojaee, Saeed;Hamzehei-Javaran, Saleh
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.37-49
    • /
    • 2020
  • In this paper, free vibration finite element analysis of axially moving laminated composite beams subjected to axial tension is studied. It is assumed that the beam has a constant axial velocity and is subject to uniform axial tension. The analysis is based on higher-order theories that have been presented by Carrera Unified Formulation (CUF). In the CUF technique, the three dimensional (3D) displacement fields are expressed as the approximation of the arbitrary order of the displacement unknowns over the cross-section. This higher-order expansion is considered in equivalent single layer (ESL) model. The governing equations of motion are obtained via Hamilton's principle. Finally, several numerical examples are presented and the effect of the ply-angle, travelling speed and axial tension on the natural frequencies and beam stability are demonstrated.

Micro-mechanical FE Analysis of Dual-phase Steels (미세조직이 고려된 이상 조직강의 유한 요소 해석)

  • Ha, J.;Lee, J.W.;Kim, J.H.;Barlat, F.;Lee, M.G.
    • Transactions of Materials Processing
    • /
    • v.24 no.3
    • /
    • pp.194-198
    • /
    • 2015
  • Microstructure based FE simulations were conducted to investigate the micro-mechanical properties of ferrite-martensite dual-phase steels. The FE model was built based on real microstructure images which were characterized by optical microscopy through the thickness direction. Serial sectioned 2D images were converted into semi-2D representative volume elements (RVEs) model. Each RVE model was subjected to a non-proportional loading condition and the mechanical response was analyzed on both the macroscopic and microscopic levels. Macroscopically, stress-strain curves were described under tension-compression and tension-orthogonal tension conditions and the Bauschinger effect was well captured for both loading paths. In addition, micromechanical properties were investigated in the view of stress-strain partitioning and strain localization during monotonic tension.

Change of End-tidal PCS During Cardiopulmonary Bypass (체외순환시 호기말 이산화탄소압의 변화)

  • 오중환
    • Journal of Chest Surgery
    • /
    • v.25 no.12
    • /
    • pp.1399-1403
    • /
    • 1992
  • The evaluation of the effectivess of ongoing cardiopulmonary resucitation efforts is dependent on the commonly used methods, such as the presence of femoral or carotid artery pulsations, arterial blood gas determinations, peripheral arterial pressure and intracardiac pressure monitoring. But recent studies suggest that end-tidal carbon dioxide tension serves as a non-invasive measurement of pulmonary blood flow and therefore cardiac output under constant ventilation. A prospective clinical study was done to determine whether end-tidal carbon dioxide monitoring in open heart surgery under cardiopulmonary bypass could be used as a prognostic indicator of bypass weaning. We monitored end-tidal PCO2 values continuously during cardiopulmonary bypass in 30 patients. "Ohmeda 5210 CO-2 monitor" under infrared absorption method were incorperated into the ventilator circuit by means of a side point adaptor between endotracheal tube and ventilator tubing. 18 patients[Group I ] were res-ucitated from partial bypass followed by aorta cross clamp off and 12 patients[Group II ] from aorta cross clamp off followed by partial bypass. But there was no difference between two groups[p>0.05]. The value of end-tidal carbon dioxide tension during ventricular fibrillation or nearly arrest state was 6.6$\pm$2.9 mmHg, and at the time of spontaneous beating was 19.3$\pm$5.6 mmHg[Mean$\pm$Standard deviation], In conclusion end-tidal carbon dioxide tension monitoring provides clinically useful, continous, noninvasive and supplementary prognostic indicator during cardiopulmonary bypass weaning procedures.rocedures.

  • PDF

Experimental Investigation on the Breakup Characteristics of Various Fuels in air Cross-flow Condition (연료 물성에 따른 횡단 유동장 내의 액적 분열 특성에 관한 실험적 연구)

  • Kim, Sa-Yop;Lee, Keun-Hee;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.12 no.3
    • /
    • pp.160-165
    • /
    • 2007
  • In this study, the breakup characteristics of mono disperse droplets were studied with various fuels, ethanol, diesel fuel, biodiesel fuel extracted from soybean oil, and pure water. In order to investigate the droplet behavior in air cross-flow conditions, the experimental equipment was composed of a droplet generator with an air nozzle, and a high-magnification photo detecting system. Droplets produced by the droplet generator were injected into the air stream flowing normal to a direction of liquid drop jet. Digital images of the droplet behavior in air flow field were recorded by controlling the air flow rate. From the inspections, droplet breakup mechanism is primarily classified into the two kinds of stage, first breakup stage and second breakup stage. At the first breakup stage, droplet deformation rate seems to be affected by the force induced by the surface tension and the viscosity. On the other hand, at the second breakup stage, droplet is broken up mainly induced by the surface tension, so the breakup transition can be divided by the regular Weber number.

  • PDF

Nonlinear analysis and tests of steel-fiber concrete beams in torsion

  • Karayannis, Chris G.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.4
    • /
    • pp.323-338
    • /
    • 2000
  • An analytical approach for the prediction of the behaviour of steel-fiber reinforced concrete beams subjected to torsion is described. The analysis method employs a special stress-strain model with a non-linear post cracking branch for the material behaviour in tension. Predictions of this model for the behaviour of steel-fiber concrete in direct tension are also presented and compared with results from tests conducted for this reason. Further in this work, the validation of the proposed torsional analysis by providing comparisons between experimental curves and analytical predictions, is attempted. For this purpose a series of 10 steel-fiber concrete beams with various cross-sections and steel-fiber volume fractions tested in pure torsion, are reported here. Furthermore, experimental information compiled from works around the world are also used in an attempt to establish the validity of the described approach based on test results of a broad range of studies. From these comparisons it is demonstrated that the proposed analysis describes well the behaviour of steel-fiber concrete in pure torsion even in the case of elements with non-rectangular cross-sections.

Analysis of Folded Plate Structures Composed of Laminated Composite Plates (복합재료 적층판으로 구성된 절판구조물의 구조해석)

  • 이정호;홍창우;이주형;김동호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.1
    • /
    • pp.122-128
    • /
    • 2001
  • The theory of non-prismatic folded plate structures was reported by D.H. Kim in 1965 and 1966. Fiber reinforced composite materials are strong in tension. The structural element for such tension force is very thin and weak against bending because of small bending stiffnesses. Naturally, the box type section is considered as the optimum structural configuration because of its high bending stiffnesses. Such structures can be effectively analyzed by the folded plate theory with relative ease. The “hollow” bending membr with uniform cross-section can be treated as prismatic folded plates which is a special case of the non-prismatic folded plates. In this paper, the result of analysis of a folded plates with one box type uniform cross-section is presented. Each plate is made of composite laminates with fiber orientation of [ABBCAAB]r, with A=-B=45${\circ}C$, and C=90${\circ}$. The influence of the span to depth ratio is also studied. When this ratio is 5, the difference between the results of folded plate theory and beam theory is 1.66%.

  • PDF

Fatigue Analysis of Spot Welded Joints in Suspension Mounting Part

  • Yum, Youung-Jin;Chu, Young-Woo;Chu, Seok-Jae;Kim, Jung-Han;Hee You
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1113-1119
    • /
    • 2003
  • Experimental and numerical analyses were performed to characterize the fatigue behavior of spot welded joints in suspension mounting of a passenger car body. Static and fatigue tests were carried out for the tensile-shear and cross-tension specimens. S-N curve and fatigue strengths were obtained from the fatigue test of various specimens. Nonlinear finite element analysis showed that fatigue behavior of spot welded joints could be well estimated in terms of Von Mises stress at the nugget edge. Fatigue behavior of spot welded joint was represented by Von Mises stress better than the fatigue load.

An effective stiffness model for RC flexural members

  • Balevicius, Robertas
    • Structural Engineering and Mechanics
    • /
    • v.24 no.5
    • /
    • pp.601-620
    • /
    • 2006
  • The paper presents an effective stiffness model for deformational analysis of reinforced concrete cracked members in bending throughout the short-term loading up to the near failure. The method generally involves the analytical derivation of an effective moment of inertia based on the smeared crack technique. The method, in a simplified way, enables us to take into account the non linear properties of concrete, the effects of cracking and tension stiffening. A statistical analysis has shown that proposed technique is of adequate accuracy of calculated and experimental deflections data provided for beams with small, average and normal reinforcement ratios.

Design of bars in tension or compression exposed to a corrosive environment

  • Fridman, Mark M.;Elishakoff, Isaac
    • Ocean Systems Engineering
    • /
    • v.5 no.1
    • /
    • pp.21-30
    • /
    • 2015
  • This study is devoted to the optimal design of compressed bars under axial tensile or compressive forces and exposed to a corrosive environment. Dolinskii's linear stress corrosion model is adopted for analysis. Analytical and numerical results are derived for optimal variation of the cross-sectional area of the bar along its axis.

Preparation and Surface-Active Properties of Vinyl Acetate Cotelomers (I) (비닐아세테이트 코텔로머의 제조 및 계면활성(I))

  • Lee, Eon-Pil;Kang, Se-Mi;Hwang, Dae-Youn;Jung, Young-Jin;Choi, Hae-Wook;Choi, Young-Ho;Lee, Jae-Ho
    • Fashion & Textile Research Journal
    • /
    • v.14 no.4
    • /
    • pp.677-683
    • /
    • 2012
  • 1-octanethiol and vinyl acetate telomers ($R_8S$-nVAc) were synthesized and hydrolyzed with sodium hydroxide subsequently, 1.2-epoxyhexane was then introduced to the telomers. In addition, we prepared cotelomers of multi-alkylated nonionic surfactants with a molecular structure of xRnMA-yVA (x; hydrophobic group, y; hydrophilic group, MA; methacrylic ester, VA; vinyl alcohol, R; and alkyl group) and cross-linked with sodium tetraborate decahydrate. Their active surface properties were investigated by several techniques such as surface tension, foaming property, and emulsification power measurements. The surface tension of $R_8S$-8.8VA decreased without the introduction of 1.2-Epoxy hexane, and the degree of emulsification and foaming abilities of $R_8S$-8.8VA increased without the introduction of 1.2-Epoxy hexane. However, the differences were insignificant. The epoxy groups were attached to a $R_8S$-8.8VA cotelomer with a limited variation of the active surface properties. The surface tension of $1.1R_6MA$-8.8VA decreased after cross-linking subsequently, the degree of emulsification and foaming abilities of $1.1R_6MA$-8.8VA increased after cross-linking. However, there was no clear difference between them. The B-O bonds were attached to a $1.1R_6MA$-8.8VA cotelomer with a limited variation of the active surface properties.