• Title/Summary/Keyword: Cross-Coupling Controller

Search Result 49, Processing Time 0.05 seconds

Flight Dynamic Identification of a Model Helicopter using CIFER®(II) - Frequency Response Analysis - (CIFER®를 이용한 무인 헬리콥터의 동특성 분석 (II) - 주파수 응답 해석 -)

  • Bae, Yeoung-Hwan;Koo, Young-Mo
    • Journal of Biosystems Engineering
    • /
    • v.36 no.6
    • /
    • pp.476-483
    • /
    • 2011
  • The aerial application using an unmanned helicopter has been already utilized and an attitude controller would be developed to enhance the operational convenience and safety of the operator. For a preliminary study of designing flight controller, a state space model for an RC helicopter would be identified. Frequency sweep flight tests were performed and time history data were acquired in the previous study. In this study, frequency response of the flight test data of a small unmanned helicopter was analyzed by using the CIFER software. The time history flight data consisted of three replications each for collective pitch, aileron, elevator and rudder sweep inputs. A total of 36 frequency responses were obtained for the four control stick inputs and nine outputs including linear velocities and accelerations and angular velocities in 3-axis. The results showed coherence values higher than 0.6 for every primary control inputs and corresponding on-axis outputs for the frequency range from 0.07 to 4 Hz. Also the analysis of conditioned frequency response showed its effectiveness in evaluating cross coupling effects. Based on the results, the dynamic characteristics of the model helicopter can further be analyzed in terms of transfer functions and the undamped natural frequency and damping ratio of each critical mode.

Control of Heavy Duty Robot using Robust Proportional Integral Sliding Mode (강인한 비례적분 슬라이딩 모드를 이용한 초중량물 로봇의 제어)

  • Ko, Chang-Min;Park, Seong-Hun;Lee, Hyun-Seok;Kim, Min-Chan;Park, Seung-Kyu;Kim, Doo-Hyeong;Chung, Gwang-Jo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1729_1730
    • /
    • 2009
  • This paper presents comparative experimental results of PI sliding mode control and PI control for a heavy duty robot which can handle an object of 600kg, The gains of the PI control was determined by TAE(Trial and Error) method. This paper presents a novel approach for the decoupling of the states cross-coupling using sliding mode control. The sliding mode control methode is based on the error between reference speeds and the actual speed. The proposed method has the advantages of PI control performance and the sliding mode control robustness. Its first step is to design PI controller, then the sliding mode control input term is added to it. This makes actual implementation of the controller easier. The robot and motion controllers were designed and made by author. The good control performance of the heavy duty robot was obtained by using simple algorithm. This means that the robot was designed very well in control respect.

  • PDF

Control of Electrically Excited Synchronous Motors with a Low Switching Frequency

  • Yuan, Qing-Qing;Wu, Xiao-Jie;Dai, Peng;Fu, Xiao
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.615-622
    • /
    • 2012
  • The switching frequency of the power electronic devices used in large synchronous motor drives is usually kept low (less than 1 kHz) to reduce the switching losses and to improve the converter power capability. However, this results in a couple of problems, e.g. an increase in the harmonic components of the stator current, and an undesired cross-coupling between the magnetization current component ($i_m$) and the torque component ($i_t$). In this paper, a novel complex matrix model of electrically excited synchronous motors (EESM) was established with a new control scheme for coping with the low switching frequency issues. First, a hybrid observer was proposed to identify the instantaneous fundamental component of the stator current, which results in an obvious reduction of both the total harmonic distortion (THD) and the low order harmonics. Then, a novel complex current controller was designed to realize the decoupling between $i_m$ and $i_t$. Simulation and experimental results verify the effectiveness of this novel control system for EESM drives.

A New Approach to Motion Modeling and Autopilot Design of Skid-To-Turn Missiles

  • Chanho Song;Kim, Yoon-Sik
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.231-238
    • /
    • 2002
  • In this paper, we present a new approach to autopilot design for skid-to-turn missiles which may have severe aerodynamic cross-couplings and nonlinearities with angle of attack. The model of missile motion is derived in the maneuver plane and, based on that model, pitch, yaw, and roll autopilot are designed. They are composed of a nonlinear term which compensates for the aerodynamic couplings and nonlinearities and a linear controller driven by the measured outputs of missile accelerations and angular rates. Besides the outputs, further information such as Mach number, dynamic pressure, total angle of attack, and bank angle is required. With the proposed autopilot and simple estimators of bank angle and total angle of attack, it is shown by computer simulations that the induced moments and some aerodynamic nonlinearities are properly compensated and that the performance is superior to that of the conventional ones.

Coordination Control of Multiple Electrical Excited Synchronous Motors and Its Application in High-Power Metal-Rolling Systems

  • Shang, Jing;Nian, Xiaohong;Liu, Yong
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1781-1790
    • /
    • 2016
  • This study focuses on the coordination control problem of multiple electrical excited synchronous motor systems. A robust coordination controller is designed on the basis of cross coupling and an interval matrix. The proposed control strategy can deal with load uncertainty. In addition, the proposed control strategy is applied to a high-power metal-rolling system. Simulation and experiment results demonstrate that the proposed control strategy achieves good dynamic and static performance. It also shows better coordination performance than traditional proportional-integral controllers.

Decoupling Vector Control for a High-Speed Synchronous Reluctance Motor (고속 동기 릴럭턴스 전동기의 비간섭 벡터제어)

  • 백동기;성세진
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.128-135
    • /
    • 1998
  • In the high speed range for salient type synchronous reluctance motor, the effect of iron loss can not be negligible. In this paper, under he assumption that stator iron loss is generated from the equivalent eddy current in the stator, we derive the voltage equations including iron loss from the model that is added the equivalent iron loss in the equivalent inductance in series. The variation of iron loss is dependent on the increase of the operating frequency change for he worse a performance of the vector control system. As there is cross coupling between the d and q axes, it is hard to apply the vector control to the proposed model. Hence, we propose a decoupling current controller for including the effects of iron loss, And we show that the proposed vector control scheme achieves the desired performances through simulation results.

  • PDF

Sliding Mode Controller Design Using Virtual State and State Decoupling for IPM Motor (가상 상태와 상태 디커플링을 이용한 IPM전동기용 슬라이딩 모드 제어기의 설계)

  • Kim, Min-Chan;Park, Seung-Kyu;Yoon, Seong-Sik;Kwak, Gun-Pyong;Park, Young-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.514-521
    • /
    • 2009
  • The current control for Interior-mounted Permanent Magnet Motor(IPM Motor) is more complicate than Surface-mounted Permanent magnet Motor(SPM Motor) because of its torque characteristic depending on the reluctance. For high performance torque control, it requirs state decoupling between d-axis current and q-axis current dynamics. However the variation of the inductances, which couples the state dynamics of the currents, makes the state decoupling difficult. So some decoupling methods have developed to cope this variation and each current can be regulated independently. This paper proposes a novel approach for fully decoupling the states cross-coupling using sliding mode control with virtual state for IPM Motor. As a result, in spite of the parameter uncertainty and disturbance, the proposed sliding surface can have the dynamics of nominal system controlled by PI controller.

Design of 5'' True Color FED Driving System (5'' True Color FED 구동시스템 설계)

  • Shin, Hong-Jae;Kwon, Oh-Kyong;Kwack, Kae-Dal
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.5
    • /
    • pp.70-78
    • /
    • 2001
  • We have developed a novel driving system of 5' true color FED using voltage controlled PWM method which has current control effect. The proposed method has the advantage of voltage controlled pulse width modulation method and current control method. Also, we propose a new circuit model of FED subpixel for circuit simulation of FED driving circuits, considering some parasitic effects, i.e., cross talk, line coupling effect and leakage current to the adjacent cathode lines. Output stage of the data driving circuit is optimized using the proposed circuit model. In video data processing, FED controller uses the parallel processing of R.G.B input data, so duty ratio is maximized and brightness of FED increases. With this results, no noise and high quality performance is achieved in display of 5' true color FED.

  • PDF

Optimal Design of Magnetically Levitated Flywheel Energy Storage System Based on System Stability Using Rigid-Body Model (강체모델 기반 시스템 안정성을 고려한 자기부상 플라이휠 에너지 저장장치의 최적 설계)

  • Kim, Jung-Wan;Yoo, Seong-Yeol;Bae, Yong-Chae;Noh, Myoung-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.283-289
    • /
    • 2010
  • Owing to the increasing worldwide interest in green technology and renewable energy sources, flywheel energy storage systems (FESSs) are gaining importance as a viable alternative to traditional battery systems. Since the energy storage capacity of an FESS is proportional to the principal mass-moment of inertia and the square of the running speed, a design that maximizes the principal inertia while operatingrunning at the highest possible speed is important. However, the requirements for the stability of the system may impose a constraint on the optimal design. In this paper, an optimal design of an FESS that not only maximizes the energy capacity but also satisfies the requirements for system stability and reduces the sensitivity to external disturbances is proposed. Cross feedback control in combination with a conventional proportional-derivative (PD) controller is essential to reduce the effect of gyroscopic coupling and to increase the stored energy and the specific energy density.