• 제목/요약/키워드: Cross wind

검색결과 435건 처리시간 0.026초

Kelvin Ship Wake Modification due to Wind Waves

  • ;;안정선
    • 한국해양공학회지
    • /
    • 제22권5호
    • /
    • pp.1-6
    • /
    • 2008
  • A kinematics model of a ship wake in the presence of surface waves generated by wind is presented. It was found that a stationary wave structure behind a ship covered a wedge region with the angle at the top of the wake and that only divergent waves were present in a ship wake instead of both the longitudinal and cross-waves, which are known as the Kelvin model. Ship motion at some angle to wind waves can cause an essential asymmetry of the wake, compressing its windward half.

유한요소법을 이용한 진동물체의 최적 제어에 관한 연구 (Optimal Control of An Oscillating Body Using Finite Element Methods)

  • 박승진
    • 도시과학
    • /
    • 제7권1호
    • /
    • pp.55-61
    • /
    • 2018
  • Long bridges, such as suspension bridges and diagonal bridges, are complex phenomena that show different behaviors depending on the shape and rigidity of the cross sections, such as wind vibrations and liquid vibrations from earthquakes in liquid storage containers. This is called the lower skirt on the lower side of the bridge, and the installation of lower skirt is effective for release and vortex vibrations caused by rapid winds, and that increases the stability of the wind resistance of the bridge. Optimal shape and installation of the lower skirt is also essential to make maximum wind speed effect of the lower skirt. Therefore, this study proposes a numerical analysis method to control the vibration of a bridge by calculating the optimal installation angle of an optimal lower skirt according to the optimal control theory and this study evaluates the impact on the optimal control system by minimizing the dominance equation with an evaluation function,which is an indicator for evaluating the optimal control theory state.

Effects Of Atmospheric Pressure And Wind Stress On Daily Mean Sea Level In The Bay Of Biscay. Analysis Of Continental Shelf Waves

  • Lie, Heung-Jae
    • 한국해양학회지
    • /
    • 제14권2호
    • /
    • pp.45-53
    • /
    • 1979
  • The barometric factor is estimated at five stations in the Bay of Biscay from the linear regression between daily mean sea level and atmospheric pressure. The results show that the adjusted sea level change is important in amplitude in spite of the barometric response of the sea level to the atmospheric pressure. The cross-correlations between adjusted sea levels and the two components of wind stress suggest that the adjusted sea level is highly related to the longshore wind stress. The observed phase and the time lag between adjusted sea levels at adjacent stations aree consistent with the hypothesis of the northward travelling continental shelf waves.

  • PDF

고층건물에 작용하는 풍하중에 관한 수치 해석적 연구 (Numerical study of wind load on the high-rise building)

  • 송지수;박승오;김동우;하영철
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.205-208
    • /
    • 2008
  • The wind load on building surface is numerically investigated. The geometry of target building is a square cross section and aspect ratio (height (H) to width (d)) is 6. On building surface, the pressure was measured, compared to obtained value from numerical simulation. The numerical simulations were done using URANS with three different turbulence models such as v2-f model, k-${\omega}$model, and k-${\varepsilon}$ model, respectively. The v2-f model showed the best agreement with experimental data in simulating mean pressure coefficients on front, rear and side surface. But unsteady characteristics of pressure history measured on surface is shown a discrepancy between experiment and numerical simulation.

  • PDF

Aeroelastic forces on yawed circular cylinders: quasi-steady modeling and aerodynamic instability

  • Carassale, Luigi;Freda, Andrea;Piccardo, Giuseppe
    • Wind and Structures
    • /
    • 제8권5호
    • /
    • pp.373-388
    • /
    • 2005
  • Quasi-steady approaches have been often adopted to model wind forces on moving cylinders in cross-flow and to study instability conditions of rigid cylinders supported by visco-elastic devices. Recently, much attention has been devoted to the experimental study of inclined and/or yawed circular cylinders detecting dynamical phenomena such as galloping-like instability, but, at the present state-of-the-art, no mathematical model is able to recognize or predict satisfactorily this behaviour. The present paper presents a generalization of the quasi-steady approach for the definition of the flow-induced forces on yawed and inclined circular cylinders. The proposed model is able to replicate experimental behaviour and to predict the galloping instability observed during a series of recent wind-tunnel tests.

Modal transformation tools in structural dynamics and wind engineering

  • Solari, Giovanni;Carassale, Luigi
    • Wind and Structures
    • /
    • 제3권4호
    • /
    • pp.221-241
    • /
    • 2000
  • Structural dynamics usually applies modal transformation rules aimed at de-coupling and/or minimizing the equations of motion. Proper orthogonal decomposition provides mathematical and conceptual tools to define suitable transformed spaces where a multi-variate and/or multi-dimensional random process is represented as a linear combination of one-variate and one-dimensional uncorrelated processes. Double modal transformation is the joint application of modal analysis and proper orthogonal decomposition applied to the loading process. By adopting this method the structural response is expressed as a double series expansion in which structural and loading mode contributions are superimposed. The simultaneous use of the structural modal truncation, the loading modal truncation and the cross-modal orthogonality property leads to efficient solutions that take into account only a few structural and loading modes. In addition the physical mechanisms of the dynamic response are clarified and interpreted.

Simplified formulations for flutter instability analysis of bridge deck

  • Vu, Tan-Van;Kim, Young-Min;Han, Tong-Seok;Lee, Hak-Eun
    • Wind and Structures
    • /
    • 제14권4호
    • /
    • pp.359-381
    • /
    • 2011
  • This paper deals with the flutter instability problem of flexible bridge decks in the framework of bimodal-coupled aeroelastic bridge system analysis. Based on the analysis of coefficients of the polynomials deduced from the singularity conditions of an integral wind-structure impedance matrix, a set of simplified formulations for calculating the critical wind velocity and coupled frequency are presented. Several case studies are discussed and comparisons with available approximated approaches are made and presented, along with a conventional complex eigenvalue analysis and numerical results. From the results, it is found that the formulas that are presented in this study are applicable to a variety of bridge cross sections that are not only prone to coupled-mode but also to single-mode-dominated flutter.

강선으로 보강된 연동형 비닐하우스 골조의 구조거동 (Behavior of Multiple Vinyl House Frames Reinforced by Steel Wire)

  • 정동조;김진;서윤수
    • 한국농촌건축학회논문집
    • /
    • 제18권3호
    • /
    • pp.35-42
    • /
    • 2016
  • For the reason of economy, farmers and structural engineers prefer the vinyl house frame members that have the lightest cross sections. Therefore, in order to reach this aim, rod bracing system is the best method for multiple vinyl house frames. In this study, wire rods (tension members) are used to be bracing members in multiple vinyl house frames. The effects of additional wire rods in the frames are investigated by the variations of the bending moments, axial forces, displacements and combined stresses in the main frames that are reinforced by different shapes of rod bracing system. Vinyl house frames are usually made by steel pipe members and collapsed by the excessive wind and snow loads. Two kinds of bracing models are used for wind and snow loads separately in this study. The effective bracing models for each load are finally figured out.

인발 성형법을 이용한 C/GFRP 복합소재 신호등 부착대의 구조적 안정성에 관한 연구 (Structural Stability Study of C/GFRP Composite material Traffic Light Fixture and Wind Load)

  • 나경수;곽이구
    • 한국기계가공학회지
    • /
    • 제20권11호
    • /
    • pp.9-16
    • /
    • 2021
  • As the climate changes rapidly due to warming, it is becoming very important to ensure the stability of environmental structures. It is necessary to choose a material that withstands repeated external forces (wind loads) and satisfies members and joints that have energy absorbing power. Even if the strength of the traffic light attachment is sufficient, if the rigidity is insufficient, there is a limit to the displacement during strong winds. Excessive deformation may cause damage and fall, resulting in a safety accident. The author intends to study mechanical properties and resistance to external environment as a structural material capable of withstanding wind load (50m/sec) by fabricating a C/GFRP composite traffic light attachment using the pultrusion method (Pultrusion).

Coupling effects of vortex-induced vibration for a square cylinder at various angles of attack

  • Zheng, Deqian;Ma, Wenyong;Zhang, Xiaobin;Chen, Wei;Wu, Junhao
    • Wind and Structures
    • /
    • 제34권5호
    • /
    • pp.437-450
    • /
    • 2022
  • Vortex-induced vibration (VIV) is a significant concern when designing slender structures with square cross sections. VIV strongly depends on structural dynamics and flow states, which depend on the conditions of the approaching flow and shape of a structure. Therefore, the effects of the angle of attack on the coupling effects of VIV for a square cylinder are expected to be significant in practice. In this study, the aerodynamic forces for a fixed and elastically mounted square cylinder were measured using wind pressure tests. Aerodynamic forces on the stationary cylinder are firstly discussed by comparisons of variation of statistical aerodynamic force and wind pressure coefficient with wind angle of attack. The coupling effect between the aerodynamic forces and the motion of the oscillating square cylinder by VIV is subsequently investigated in detail at typical wind angels of attack with occurrence of three typical flow regimes, i.e., leading-edge separation, separation bubble (reattachment), and attached flow. The coupling effect are illustrated by discussing the onset of VIV, characteristics of aerodynamic forces during VIV, and interaction between motion and aerodynamic forces. The results demonstrate that flow states can be classified based on final separation points or the occurrence of reattachment. These states significantly influence coupling effects of the oscillating cylinder. Vibration enhances vortex shedding, which creates strong fluctuations in aerodynamic forces. However, differences in the lock-in range, aerodynamic force, and interaction process for angles of attack smaller and larger than the critical angle of attack revealed noteworthy characteristics in the VIV of a square cylinder.