• Title/Summary/Keyword: Cross wind

Search Result 433, Processing Time 0.023 seconds

Estimation of Polarization Ratio for Sea Surface Wind Retrieval from SIR-C SAR Data

  • Kim, Tae-Sung;Park, Kyung-Ae
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.729-741
    • /
    • 2011
  • Wind speeds have long been estimated from C-band VV-polarized SAR data by using the CMOD algorithms such as CMOD4, CMOD5, and CMOD_IFR2. Some SAR data with HH-polarization without any observations in VV-polarization mode should be converted to VV-polarized value in order to use the previous algorithms based on VV-polarized observation. To satisfy the necessity of polarization ratio (PR) for the conversion, we retrieved the conversion parameter from full-polarized SIR-C SAR image off the east coast of Korea. The polarization ratio for SIR-C SAR data was estimated to 0.47. To assess the accuracy of the polarization ratio coefficient, pseudo VV-polarized normalized radar cross section (NRCS) values were calculated and compared with the original VV-polarized ones. As a result, the estimated psudo values showed a good agreement with the original VV-polarized data with an root mean square error by 0.99 dB. We applied the psudo NRCS to the estimation of wind speeds based on the CMOD wind models. Comparison of the retrieved wind field with the ECMWF and NCEP/NCAR reanalysis wind data showed relatively small rms errors of 1.88 and 1.91 m/s, respectively. SIR-C HH-polarized SAR wind retrievals met the requirement of the scatterometer winds in overall. However, the polarization ratio coefficient revealed dependence on NRCS value, wind speed, and incident angle.

Conceptual Design Study of a Low-Speed Wind Tunnel for Performance Test of Wind Turbine (풍력터빈 성능시험을 위한 풍동 개념연구)

  • Kang, Seung-Hee;Choi, Woo-Ram;Kim, Hae-Jeong;Kim, Yong-Hwi
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.431-434
    • /
    • 2009
  • Conceptual study of an open-circuit type low-speed wind tunnel for test of wind turbine blade is conducted. The tunnel is constituted of a settling chamber, a contraction, closed and open test sections, a diffuser, two corners, a cross leg and a fan and motor. For the performance test, the closed test section width of 1.8 m, height of 1.8 m and length of 5.25 m is selected. The open test section with dimension width of 1.8 m, height of 1.8 m and length of 4.14 m is adopted for aeroacoustic test. The contraction ratio is 9 to 1 and maximum speed in the closed test section is 67 m/sec. Input power in the tunnel is about 238 kW and its energy ratio is 3.6. The wind tunnel designed in present study will be an effective tool in research and development of wind turbine.

  • PDF

Machine learning approaches for wind speed forecasting using long-term monitoring data: a comparative study

  • Ye, X.W.;Ding, Y.;Wan, H.P.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.733-744
    • /
    • 2019
  • Wind speed forecasting is critical for a variety of engineering tasks, such as wind energy harvesting, scheduling of a wind power system, and dynamic control of structures (e.g., wind turbine, bridge, and building). Wind speed, which has characteristics of random, nonlinear and uncertainty, is difficult to forecast. Nowadays, machine learning approaches (generalized regression neural network (GRNN), back propagation neural network (BPNN), and extreme learning machine (ELM)) are widely used for wind speed forecasting. In this study, two schemes are proposed to improve the forecasting performance of machine learning approaches. One is that optimization algorithms, i.e., cross validation (CV), genetic algorithm (GA), and particle swarm optimization (PSO), are used to automatically find the optimal model parameters. The other is that the combination of different machine learning methods is proposed by finite mixture (FM) method. Specifically, CV-GRNN, GA-BPNN, PSO-ELM belong to optimization algorithm-assisted machine learning approaches, and FM is a hybrid machine learning approach consisting of GRNN, BPNN, and ELM. The effectiveness of these machine learning methods in wind speed forecasting are fully investigated by one-year field monitoring data, and their performance is comprehensively compared.

Wind Speed Prediction in Complex Terrain Using a Commercial CFD Code (상용 CFD 프로그램을 이용한 복잡지형에서의 풍속 예측)

  • Woo, Jae-Kyoon;Kim, Hyeon-Gi;Paek, In-Su;Yoo, Neung-Soo;Nam, Yoon-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.8-22
    • /
    • 2011
  • Investigations on modeling methods of a CFD wind resource prediction program, WindSim for a ccurate predictions of wind speeds were performed with the field measurements. Meteorological Masts having heights of 40m and 50m were installed at two different sites in complex terrain. The wind speeds and direction were monitored from sensors installed on the masts and recorded for one year. Modeling parameters of WindSim input variables for accurate predictions of wind speeds were investigated by performing cross predictions of wind speeds at the masts using the measured data. Four parameters that most affect the wind speed prediction in WindSim including the size of a topographical map, cell sizes in x and y direction, height distribution factors, and the roughness lengths were studied to find out more suitable input parameters for better wind speed predictions. The parameters were then applied to WindSim to predict the wind speed of another location in complex terrain in Korea for validation. The predicted annual wind speeds were compared with the averaged measured data for one year from meteorological masts installed for this study, and the errors were within 6.9%. The results of the proposed practical study are believed to be very useful to give guidelines to wind engineers for more accurate prediction results and time-saving in predicting wind speed of complex terrain that will be used to predict annual energy production of a virtual wind farm in complex terrain.

Estimation of Sea Surface Wind Speed and Direction From RADARSAT Data

  • Kim, Duk-Jin;Wooil-M. Moon
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.485-490
    • /
    • 1999
  • Wind vector information over the ocean is currently obtained using multiple beam scatterometer data. The scatterometers on ERS-1/2 generate wind vector information with a spatial resolution of 50km and accuracies of $\pm$2m/s in wind speed and $\pm$20$^{\circ}$ in wind direction. Synthetic aperture radar (SAR) data over the ocean have the potential of providing wind vector information independent of weather conditions with finer resolution. Finer resolution wind vector information can often be useful particularly in coastal regions where the scatterometer wind information is often corrupted because of the lower resolution system characteristics which is often contaminated by the signal returns from the coastal areas or ice in the case of arctic environments. In this paper we tested CMOD_4 and CMOD_IFR2 algorithms for extracting the wind vector from SAR data. These algorithms require precise estimation of normalized radar cross-section and wind direction from the SAR data and the local incidence angle. The CMOD series algorithms were developed for the C-band, VV-Polarized SAR data, typically for the ERS SAR data. Since RADARSAT operates at the same C-band but with HH-Polarization, the CMOD series algorithms should not be used directly. As a preliminary approach of resolving with this problem, we applied the polarization ratio between the HH and VV polarizations in the wind vectors estimation. Two test areas, one in front of Inchon and several sites around Jeju island were selected and investigated for wind vector estimation. The new results were compared with the wind vectors obtained from CMOD algorithms. The wind vector results agree well with the observed wind speed data. However the estimation of wind direction agree with the observed wind direction only when the wind speed is greater than approximately 3.0m/s.

  • PDF

Wind-excited stochastic vibration of long-span bridge considering wind field parameters during typhoon landfall

  • Ge, Yaojun;Zhao, Lin
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.421-441
    • /
    • 2014
  • With the assistance of typhoon field data at aerial elevation level observed by meteorological satellites and wind velocity and direction records nearby the ground gathered in Guangzhou Weather Station between 1985 and 2001, some key wind field parameters under typhoon climate in Guangzhou region were calibrated based on Monte-Carlo stochastic algorithm and Meng's typhoon numerical model. By using Peak Over Threshold method (POT) and Generalized Pareto Distribution (GPD), Wind field characteristics during typhoons for various return periods in several typical engineering fields were predicted, showing that some distribution rules in relation to gradient height of atmosphere boundary layer, power-law component of wind profile, gust factor and extreme wind velocity at 1-3s time interval are obviously different from corresponding items in Chinese wind load Codes. In order to evaluate the influence of typhoon field parameters on long-span flexible bridges, 1:100 reduced-scale wind field of type B terrain was reillustrated under typhoon and normal conditions utilizing passive turbulence generators in TJ-3 wind tunnel, and wind-induced performance tests of aero-elastic model of long-span Guangzhou Xinguang arch bridge were carried out as well. Furthermore, aerodynamic admittance function about lattice cross section in mid-span arch lib under the condition of higher turbulence intensity of typhoon field was identified via using high-frequency force-measured balance. Based on identified aerodynamic admittance expressions, Wind-induced stochastic vibration of Xinguang arch bridge under typhoon and normal climates was calculated and compared, considering structural geometrical non-linearity, stochastic wind attack angle effects, etc. Thus, the aerodynamic response characteristics under typhoon and normal conditions can be illustrated and checked, which are of satisfactory response results for different oncoming wind velocities with resemblance to those wind tunnel testing data under the two types of climate modes.

Particle Trajectory Visualization in Electrostatic Precipitator (정전집진기내의 입자궤적 가시화)

  • 박석주;김상수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3270-3275
    • /
    • 1994
  • Particle trajectory visualization using laser sheet was performed to investigate the corona wind flow interactions in the one-wire and two-wire type electrostatic precipitators. The corona wind generated by corona discharge was not negligible, and strong flow interactions took place owing to the induced circulatory cells. In the case of one-wire type, as the applied voltage was increased and the cross-section mean velocity was decreased, the effect of corona wind became active. In the case of two-wire type, if upstream discharge voltage was relatively higher than downstream discharge voltage, the effect of upstream corona wind was reduced.

Driving Safety Analysis for vehicles Against High Wind on the Bridges Using Extreme Value Statistics (극치통계분석을 이용한 교량상판 풍하중에 대한 차량주행 안전도 평가)

  • Chung, Jee-Seung
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.112-117
    • /
    • 2010
  • This study presents a methodology to evaluate the driving safety of vehicles against localized high wind on the roads over the valleys or along the coasts. Risk level for vehicle accident is derived from the side slip caused by cross wind, and then safety criteria based on reliability for driving stability are defined. The level of safety is classified according to probability of exceeding against wind speed using the concept of extreme value statistics. To attain the safety level of vehicle on bridges, numerical simulations using Computational Fluid Dynamics(CFD) are performed. Based on this result, risk reduction and quality improvement is expected through analysis for each alternative in bridges design, construction and operation & maintenance stage with proposed process

Wind pressures on a large span canopy roof

  • Rizzo, Fabio;Sepe, Vincenzo;Ricciardelli, Francesco;Avossa, Alberto Maria
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.299-316
    • /
    • 2020
  • Based on wind tunnel tests, this paper investigates the aerodynamic behavior of a large span canopy roof with elliptical plan and hyperbolic paraboloid shape. The statistics of pressure coefficients and the peak factor distributions are calculated for the top and bottom faces of the roof, and the Gaussian or non-Gaussian characteristics of the pressure time-histories in different areas of the roof are discussed. The cross-correlation of pressures at different positions on the roof, and between the top and bottom faces is also investigated. Combination factors are also evaluated to take into account the extreme values of net loads, relevant to the structural design of canopies.

Development of Sea Surface Wind Monitoring System using Marine Radar (선박용 레이다를 이용한 해상풍 모니터링 시스템 개발)

  • Park, Jun-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.62-67
    • /
    • 2018
  • A wave buoy commonly used for measurements in marine environments is very useful for measurements on the sea surface wind and waves. However, it is constantly exposed to external forces such as typhoons and the risk of accidents caused by ships. Therefore, the installation and maintenance charges are large and constant. In this study, we developed a system for monitoring the sea surface wind using marine radar to provide spatial and temporal information about sea surface waves at a small cost. The essential technology required for this system is radar signal processing. This paper also describes the analytical process of using it for monitoring the sea surface wind. Consequently, developing this system will make it possible to replace wave buoys in the near future.