• 제목/요약/키워드: Cross validation

검색결과 1,017건 처리시간 0.022초

CROSS-VALIDATION OF ARTIFICIAL NEURAL NETWORK FOR LANDSLIDE SUSCEPTIBILITY ANALYSIS: A CASE STUDY OF KOREA

  • LEE SARO;LEE MOUNG-JIN;WON JOONG-SUN
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.298-301
    • /
    • 2004
  • The aim of this study is to cross-validate of spatial probability model, artificial neural network at Boun, Korea, using a Geographic Information System (GIS). Landslide locations were identified in the Boun, Janghung and Youngin areas from interpretation of aerial photographs, field surveys, and maps of the topography, soil type, forest cover and land use were constructed to spatial data-sets. The factors that influence landslide occurrence, such as slope, aspect and curvature of topography, were calculated from the topographic database. Topographic type, texture, material, drainage and effective soil thickness were extracted from the soil database, and type, diameter, age and density of forest were extracted from the forest database. Lithology was extracted from the geological database, and land use was classified from the Landsat TM image satellite image. Landslide susceptibility was analyzed using the landslide­occurrence factors by artificial neural network model. For the validation and cross-validation, the result of the analysis was applied to each study areas. The validation and cross-validate results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations.

  • PDF

지진 취약성 평가 모델 교차검증: 경주(2016)와 포항(2017) 지진을 대상으로 (A Cross-Validation of SeismicVulnerability Assessment Model: Application to Earthquake of 9.12 Gyeongju and 2017 Pohang)

  • 한지혜;김진수
    • 대한원격탐사학회지
    • /
    • 제37권3호
    • /
    • pp.649-655
    • /
    • 2021
  • 본 연구는 경주시를 대상으로 수행한 선행연구를 바탕으로 도출된 최적의 지진 취약성 평가 모델을 타 지역에 적용하여 그 성능을 교차 검증(cross-validation)하고자 한다. 테스트 지역은 2017 포항지진(Pohang Earthquake)이 발생한 포항시이며, 선행연구와 동일한 영향인자 및 피해현황 관련 데이터셋을 구축하였다. 검증 데이터 셋은 무작위로 추출해 구축하였으며, 경주시의 랜덤 포레스트(random forest, RF) 기반의 모델에 적용하여 예측 정확도를 도출하였다. 경주시의 모델(success) 및 예측(prediction) 정확도는 100%, 94.9%이며, 포항시 검증 데이터 셋을 적용해 예측 정확도를 확인한 결과 70.4%로 나타났다.

실제 네트워크 모니터링 환경에서의 ML 알고리즘을 이용한 트래픽 분류 (Traffic Classification Using Machine Learning Algorithms in Practical Network Monitoring Environments)

  • 정광본;최미정;김명섭;원영준;홍원기
    • 한국통신학회논문지
    • /
    • 제33권8B호
    • /
    • pp.707-718
    • /
    • 2008
  • Traffic classification의 방법은 동적으로 변하는 application의 변화에 대처하기 위하여 페이로드나 port를 기반으로 하는 것에서 ML 알고리즘을 기반으로 하는 것으로 변하여 가고 있다. 그러나 현재의 ML 알고리즘을 이용한 traffic classification 연구는 offline 환경에 맞추어 진행되고 있다. 특히, 현재의 기존 연구들은 testing 방법으로 cross validation을 이용하여 traffic classification을 수행하고 있으며, traffic flow를 기반으로 classification 결과를 제시하고 있다. 본 논문에서는 testing방법으로 cross validation과 split validation을 이용했을 때, traffic classification의 정확도 결과를 비교한다. 또한 바이트를 기반으로 한 classification의 결과와 flow를 기반으로 한 classification의 결과를 비교해 본다. 본 논문에서는 J48, REPTree, RBFNetwork, Multilayer perceptron, BayesNet, NaiveBayes와 같은 ML 알고리즘과 다양한 feature set을 이용하여 트래픽을 분류한다. 그리고 split validation을 이용한 traffic classification에 적합한 최적의 ML 알고리즘과 feature set을 제시한다.

근사모델의 분산과 신뢰구간을 이용한 모델의 정확도 평가법 (Validation Technique using variance and confidence interval of metamodel)

  • 한인식;이용빈;최동훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1169-1175
    • /
    • 2008
  • The validation technique is classified with two methods whether to demand of additional experimental points. The method which requires additional experimental points such as RSME is actually impossible in engineering field. Therefore, the method which only use experimented points such as the cross validation technique is only available. But the cross validation not only requires considerable computational costs for generating metamodel each iterations, but also cannot measure quantitatively the fidelity of metamodel. In this research we propose a new validation technique for representative metamodels using an variance of metamodel and confidence interval information. The proposed validation technique computes confidence intervals using a variance information from the metamodel. This technique will have influence on choosing the accurate metamodel, constructing ensemble of each metamodels and advancing effectively sequential sampling technique.

  • PDF

순차적 크리깅모델의 평균-분산 정확도 검증기법 (Mean-Variance-Validation Technique for Sequential Kriging Metamodels)

  • 이태희;김호성
    • 대한기계학회논문집A
    • /
    • 제34권5호
    • /
    • pp.541-547
    • /
    • 2010
  • 메타모델의 정확도를 엄밀하게 검증하는 것은 메타모델링에서 중요한 연구주제이다. k 점 선택교차검증기법이 많은 계산시간을 요구하면서도 메타모델의 정확도를 정략적으로 측정하지 못한다. 최근들어, 평균 $_0$ 기준이 메타모델의 정확도를 정량적으로 제공하기 위하여 제안되었다. 그러나 평균 $_0$ 검증 기준은 크리깅 메타모델이 부정확함에도 불구하고 일찍 수렴하는 경향이 있다. 따라서 본 연구에서는 최대엔트로피를 이용한 순차적 실험계획에서 크리깅모델의 평균과 분산을 이용한 정확도 평가기법을 제안한다. 이 제안한 기법은 평균 및 분산을 계산할 때 수치해석으로 구하는 것이 아니라 크리깅메타모델을 직접 적분하여 구하기 때문에 k 점 선택교차검증기법보다 효율적이며 정확하다. 제안한 기준은 실제 응답의 평균제곱오차의 경향과 매우 유사하여 순차적 실험계획의 수렴기준으로 사용할 수 있다.

경로기반 상호인증을 위한 효율적 프로토콜 (An Efficient Protocol for the Cross Certification Path Validation)

  • 김홍석;박세현
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(1)
    • /
    • pp.217-220
    • /
    • 2000
  • With the expansion of E-commerce, Public Key Infrastructure (PKI) solutions are requited to resolve Internet security problems. But the certification mechanism for each organization has been independently developed under its own circumstances, so the cooperation of heterogeneous certification mechanisms must be carefully taken into account. In this paper, we propose an efficient protocol for the cross certification based on the path validation. The proposed “cross certification gateway” provides flexibility and convenience with the initial establishment protocol for the cross certification among different certification domains.

  • PDF

Developing a Molecular Prognostic Predictor of a Cancer based on a Small Sample

  • Kim Inyoung;Lee Sunho;Rha Sun Young;Kim Byungsoo
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2004년도 학술발표논문집
    • /
    • pp.195-198
    • /
    • 2004
  • One Important problem in a cancer microarray study is to identify a set of genes from which a molecular prognostic indicator can be developed. In parallel with this problem is to validate the chosen set of genes. We develop in this note a K-fold cross validation procedure by combining a 'pre-validation' technique and a bootstrap resampling procedure in the Cox regression . The pre-validation technique predicts the microarray predictor of a case without having seen the true class level of the case. It was suggested by Tibshirani and Efron (2002) to avoid the possible over-fitting in the regression in which a microarray based predictor is employed. The bootstrap resampling procedure for the Cox regression was proposed by Sauerbrei and Schumacher (1992) as a means of overcoming the instability of a stepwise selection procedure. We apply this K-fold cross validation to the microarray data of 92 gastric cancers of which the experiment was conducted at Cancer Metastasis Research Center, Yonsei University. We also share some of our experience on the 'false positive' result due to the information leak.

  • PDF

APPLICATION AND CROSS-VALIDATION OF SPATIAL LOGISTIC MULTIPLE REGRESSION FOR LANDSLIDE SUSCEPTIBILITY ANALYSIS

  • LEE SARO
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.302-305
    • /
    • 2004
  • The aim of this study is to apply and crossvalidate a spatial logistic multiple-regression model at Boun, Korea, using a Geographic Information System (GIS). Landslide locations in the Boun area were identified by interpretation of aerial photographs and field surveys. Maps of the topography, soil type, forest cover, geology, and land-use were constructed from a spatial database. The factors that influence landslide occurrence, such as slope, aspect, and curvature of topography, were calculated from the topographic database. Texture, material, drainage, and effective soil thickness were extracted from the soil database, and type, diameter, and density of forest were extracted from the forest database. Lithology was extracted from the geological database and land-use was classified from the Landsat TM image satellite image. Landslide susceptibility was analyzed using landslide-occurrence factors by logistic multiple-regression methods. For validation and cross-validation, the result of the analysis was applied both to the study area, Boun, and another area, Youngin, Korea. The validation and cross-validation results showed satisfactory agreement between the susceptibility map and the existing data with respect to landslide locations. The GIS was used to analyze the vast amount of data efficiently, and statistical programs were used to maintain specificity and accuracy.

  • PDF

베이즈 리스크를 이용한 커널형 분류에서 평활모수의 선택 (On Practical Choice of Smoothing Parameter in Nonparametric Classification)

  • 김래상;강기훈
    • Communications for Statistical Applications and Methods
    • /
    • 제15권2호
    • /
    • pp.283-292
    • /
    • 2008
  • 커널밀도함수의 추정을 이용한 분류 문제에서 평활모수(smoothing parameter, bandwidth)의 선택은 핵심적으로 중요한 역할을 한다. 본 논문에서는 분류에서 베이즈 리스크를 최적화하기 위한 평활모수의 선택이 각 개별 확률밀도함수를 추정하기 위한 최적의 평활모수와 어떤 관계가 있는지 살펴보았다. 실제 상황에서 사용할 수 있는 평활모수의 선택 방법으로 붓스트랩(bootstrap)과 교차확인법(cross-validation)을 이용하는 것을 비교한 결과, 붓스트랩 방법은 Hall과 Kang (2005)에서 밝혀진 이론적인 성질에 부합하는 반면 교차확인법은 그렇지 못함을 확인하였다. 또한, 각 방법으로 정한 평활모수를 사용하여 오분류율을 조사해 본 결과에서도 붓스트랩 방법이 우월함을 알 수 있었다.