• Title/Summary/Keyword: Cross spectral density matrix

Search Result 11, Processing Time 0.027 seconds

Generation of inflow turbulent boundary layer for LES computation

  • Kondo, K.;Tsuchiya, M.;Mochida, A.;Murakami, S.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.209-226
    • /
    • 2002
  • When predicting unsteady flow and pressure fields around a structure in a turbulent boundary layer by Large Eddy Simulation (LES), velocity fluctuations of turbulence (inflow turbulence), which reproduce statistical characteristics of the turbulent boundary layer, must be given at the inflow boundary. However, research has just started on development of a method for generating inflow turbulence that satisfies the prescribed turbulence statistics, and many issues still remain to be resolved. In our previous study, we proposed a method for generating inflow turbulence and confirmed its applicability by LES of an isotropic turbulence. In this study, the generation method was applied to a turbulent boundary layer developed over a flat plate, and the reproducibility of turbulence statistics predicted by LES computation was examined. Statistical characteristics of a turbulent boundary layer developed over a flat plate were investigated by a wind tunnel test for modeling the cross-spectral density matrix for use as targets of inflow turbulence generation for LES computation. Furthermore, we investigated how the degree of correspondence of the cross-spectral density matrix of the generated inflow turbulence with the target cross-spectral density matrix estimated by the wind tunnel test influenced the LES results for the turbulent boundary layer. The results of this study confirmed that the reproduction of cross-spectra of the normal components of the inflow turbulence generation is very important in reproducing power spectra, spatial correlation and turbulence statistics of wind velocity in LES.

Vector and Scalar Modes in Coherent Mode Representation of Electromagnetic Beams

  • Kim, Ki-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.103-106
    • /
    • 2008
  • It is shown that the two mode representations, one with vector modes and the other with scalar modes, for the cross spectral density matrices of electromagnetic beams are equivalent to each other. In particular, we suggest a method to find the vector modes from the scalar modes and formulate the cross spectral density matrix as a correlation matrix.

Modeling of ambient noise in ocean environment using coupled mode (연성모드법을 이용한 해양 배경소음 모델링)

  • Park, Jungyong;Kwon, Hyuckjong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.4
    • /
    • pp.397-409
    • /
    • 2022
  • A model is developed for the calculation of sea surface generated ambient noise in the range dependent ocean environment. The sources are located in the horizontal plane all around and their depths are at the near-surface. The receiver array is located in the range dependent ocean waveguide. One-way coupled mode method is used to model the acoustic propagation between the sources and receiver in the range dependent waveguide, and the cross spectral density matrix of noise is derived. In simulation, noise intensity, beamforming result and coherence function are calculated from the cross spectral density matrix. These results are compared with those in the range independent environment. The modeling result shows the effect of the vertical directionality and asymmetry characteristics of the horizontal plane.

Simulation of stationary Gaussian stochastic wind velocity field

  • Ding, Quanshun;Zhu, Ledong;Xiang, Haifan
    • Wind and Structures
    • /
    • v.9 no.3
    • /
    • pp.231-243
    • /
    • 2006
  • An improvement to the spectral representation algorithm for the simulation of wind velocity fields on large scale structures is proposed in this paper. The method proposed by Deodatis (1996) serves as the basis of the improved algorithm. Firstly, an interpolation approximation is introduced to simplify the computation of the lower triangular matrix with the Cholesky decomposition of the cross-spectral density (CSD) matrix, since each element of the triangular matrix varies continuously with the wind spectra frequency. Fast Fourier Transform (FFT) technique is used to further enhance the efficiency of computation. Secondly, as an alternative spectral representation, the vectors of the triangular matrix in the Deodatis formula are replaced using an appropriate number of eigenvectors with the spectral decomposition of the CSD matrix. Lastly, a turbulent wind velocity field through a vertical plane on a long-span bridge (span-wise) is simulated to illustrate the proposed schemes. It is noted that the proposed schemes require less computer memory and are more efficiently simulated than that obtained using the existing traditional method. Furthermore, the reliability of the interpolation approximation in the simulation of wind velocity field is confirmed.

An improved approach for multiple support response spectral analysis of a long-span high-pier railway bridge

  • Li, Lanping;bu, Yizhi;Jia, Hongyu;Zheng, Shixiong;Zhang, Deyi;Bi, Kaiming
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.193-200
    • /
    • 2017
  • To overcome the difficulty of performing multi-point response spectrum analysis for engineering structures under spatially varying ground motions (SVGM) using the general finite element code such as ANSYS, an approach has been developed by improving the modelling of the input ground motions in the spectral analysis. Based on the stochastic vibration analyses, the cross-power spectral density (c-PSD) matrix is adopted to model the stationary SVGM. The design response spectra are converted into the corresponding PSD model with appropriate coherency functions and apparent wave velocities. Then elements of c-PSD matrix are summarized in the row and the PSD matrix is transformed into the response spectra for a general spectral analysis. A long-span high-pier bridge under multiple support excitations is analyzed using the proposed approach considering the incoherence, wave-passage and site-response effects. The proposed approach is deemed to be an efficient numerical method that can be used for seismic analysis of large engineering structures under SVGM.

Waveguide Spatial Interference Filtering in Adaptive Matched Field Processing (적응 정합장처리에서 도파관 공간간섭 필터링)

  • 김재수;김성일;신기철;김영규;박정수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.288-295
    • /
    • 2004
  • Detection and localization of a slow and quiet target in shallow water environments is a challenging problem for which it is well known that snapshot is deficient because of a fast and strong interferer. This paper presents waveguide interference filtering technique that mitigate strong interferer problems in adaptive matched field processing. MCM (multiple constraint method) based on NDC (null direction constraint) has been proposed for new spatial interferer filter. MCM-NDC using replica force a interferer component to be filtered through CSDM (cross-spectral density matrix). This filtering have an effect on sidelobe reduction and restoring of signal gain of a quiet target. This technique was applied to a simulation on Pekeris waveguide and vertical array data from MAPLE03 (matched acoustic properties and localization experiment) in the East Sea and was shown to improve SBNR (signal-to-background-and-noise ratio) over the standard MVDR (minimum-variance distortionless response) and NSP (null space projection) technique.

Wide-band Matched Field Processing Against Source Motion : STMV (표적의 이동에 의한 영향을 극복하기 위한 광대역 정합장처리)

  • Park J.S.;Kim J.S.;Kim S.I.;Kim Y.G.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.389-392
    • /
    • 2004
  • 정합장처리를 이용한 표적의 탐지는 다양한 종류의 간섭표적들이 존재하는 환경에서 수행될 가능성이 크며, 따라서 분해능이 높은 적응 정합장처리를 사용이 요구된다. 반면 빠르게 움직이는 고소음의 간섭표적이 존재 할 경우에는 적응정합장처리를 수행하기위한 신호단편 (snapshot) 수를 충분하게 사용할 수 없는 상황에 직면하게 된다. 제한된 신호단편을 이용하여 적응정합장처리의 CSDM (cross-spectral density matrix)을 안정적으로 추정하기 위한 목적으로 선형빔형성에서 제안되었던 광대역 STMV (steered minimum varianve) 기법을 도입하였다. MAPLE03 실험환경을 이용하여 STMV의 적응정합장처리 수치실험을 수행하고 특성을 분석하였다.

  • PDF

Enhanced least square complex frequency method for operational modal analysis of noisy data

  • Akrami, V.;Zamani, S. Majid
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.263-273
    • /
    • 2018
  • Operational modal analysis is being widely used in aerospace, mechanical and civil engineering. Common research fields include optimal design and rehabilitation under dynamic loads, structural health monitoring, modification and control of dynamic response and analytical model updating. In many practical cases, influence of noise contamination in the recorded data makes it difficult to identify the modal parameters accurately. In this paper, an improved frequency domain method called Enhanced Least Square Complex Frequency (eLSCF) is developed to extract modal parameters from noisy recorded data. The proposed method makes the use of pre-defined approximate mode shape vectors to refine the cross-power spectral density matrix and extract fundamental frequency for the mode of interest. The efficiency of the proposed method is illustrated using an example five story shear frame loaded by random excitation and different noise signals.

Performance Testing of MFP for the Underwater Source with Broadband Spectrum (수중 광대역 음원에 대한 정합장처리의 음원위치 추정성능 분석과 평가)

  • Shin Kee Cheol;Park Jae Eun;Kim Jea Soo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.97-100
    • /
    • 2000
  • 정합장처리(matched-field processing)는 실제 음향자료와 복제음장과의 공간 coherence를 이용한 음장의 역추정 방법이다. 광대역 스펙트럼을 가지는 음원의 경우 협대역 단일 주파수별로 정합장 출력을 계산한 후, 각 출력을 더하는 incoherent 광대역 정합장처리를 사용하였으나, 그 경우 수신기들과 주파수들간의 상호 공간과 주파수 정보를 사용치 못하므로 음원 위치추정 성능이 저하된다. 본 논문에서는 광대역 스펙트럼의 여러 주파수를 사용하여 확장된 CSDM(cross-spectral density matrix)을 구성하여 coherent 정합장처리를 구현하고, 각 정합장처리 기법에 대한 음원 위치추정 성능을 분석하였다.

  • PDF

Multiple Targets Detection by using CLEAN Algorithm in Matched Field Processing (정합장처리에서 CLEAN알고리즘을 이용한 다중 표적 탐지)

  • Lim Tae-Gyun;Lee Sang-Hak;Cha Young-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1545-1550
    • /
    • 2006
  • In this paper, we propose a method for applying the CLEAN algorithm to an minimum variance distortionless response(MVDR) to estimate the location of multiple targets distributed in the ocean. The CLEAN algorithm is easy to implement in a linear processor, yet not in a nonlinear processor. In the proposed method, the CSDM of a Dirty map is separated into the CSDM of a Clean beam and the CSDM of the Residual, then an individual ambiguity surface(AMS) is generated. As such, the CLEAN algorithm can be applied to an MVDR, a nonlinear processor. To solve the ill-conditioned problem related to the matrix inversiion by an MVDR when using the CLEAN algorithm, Singular value decomposition(SVD) is carried out, then the reciprocal of small eigenvalues is replaced with zero. Experimental results show that the proposed method improves the performance of an MVDR.