• Title/Summary/Keyword: Cross flow model

Search Result 529, Processing Time 0.029 seconds

CFD Analysis on a Flow Channel of a Bipolar Plate with Varying Cross-sectional Area in a PEM Fuel Cell (PEM 연료전지용 Bipolar Plate의 변화단면 유로에 대한 CFD 해석)

  • Yang, Dong-Jin;Park, Woon-Jean
    • New & Renewable Energy
    • /
    • v.3 no.3
    • /
    • pp.14-19
    • /
    • 2007
  • A flow channel model of a bipolar plate with varying cross-sectional area was newly designed for improving performance and efficiency of a PEM fuel cell stack. As a result, the varying cross-sectional area model showed poor uniformity in velocity distribution, however, maximum velocity in the flow path is about 30% faster than that of the uniform cross-sectional area model. The proposed varying cross-sectional area model is expected to diffuse operating fluids more easily into diffusion layer because it has relatively higher values in pressure distribution compared with other flow channel models. It is expected that the implementation of the varying cross-sectional area model can reduce not only the mass transport loss but also the activation loss in a PEM fuel cell, and open circuit voltage of a fuel cell can thus be increased slightly.

  • PDF

Optimization of Duct System with a Cross Flow Fan to Improve the Performance of Ventilation (환기 성능 향상을 위한 횡류팬을 이용한 덕트 형상의 최적화)

  • Lee, Sang Hyuk;Kwo, Oh Joon;Hur, Nahmkeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • Recently, the duct system with a cross flow fan was used to improve the ventilation in various industrial fields. For the efficient ventilation, it is necessary to design the duct system based on the flow characteristics around the cross flow fan. In the present study, the flow characteristics around a cross flow fan in the ventilation duct were predicted by using the moving mesh and sliding interface techniques for the rotation of blades. To design the duct system with the high performance of ventilation, the CFD simulations were repeated with the revised duct model based on the DOE. With the numerical results of flow rate through the ventilation duct with various geometric parameters, the optimized geometry of ventilation duct to maximize the flow rate was obtained by using the Kriging approximation method. From the performance curves of cross flow fan in the original and optimized models of ventilation duct, it was observed that the flow rate through the optimized model is about 16 percent larger than that through the original model.

Numerical Study for Spray Characteristics of Liquid Jet in Cross Flow with Variation of Injection Angle (분사각 변화에 따른 횡단류에 분사되는 액체제트의 분무특성에 대한 수치적 연구)

  • Lee Kwan-Hyung;Ko Jung-Bin;Koo Ja-Ye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.161-169
    • /
    • 2006
  • The spray characteristics of liquid jet in cross flow with variation of injection angle are numerically studied. Numerical analysis was carried out using KIVA code, which was modified to be suitable for simulating liquid jet ejected into cross flow. Wave model and Kelvin-Helmholtz(KH)/Rayleigh-Taylor(RT) hybrid model were used for the purpose of analyzing liquid column, ligament, and the breakup of droplet. Numerical results were compared with experimental data in order to verify the reliability of the physical model. Liquid jet penetration length, volume flux, droplet velocity profile and SMD were obtained. Penetration length increases as flow velocity decreases and injection velocity increases. From the bottom wall, the SMD increases as vertical distance increases. Also the SMD decreases as injection angle increases.

Numerical Study on the Turbulent Flow in the 180^{\circ}$ Bends Decreasing Cross-sectional Aspect Ratio (단면의 폭이 감소하는 180^{\circ}$ 곡덕트 내 난류유동의 수치해석적 연구)

  • 김원갑;최영돈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1056-1062
    • /
    • 2002
  • This paper reports the characteristics of the three dimensional turbulent flow in the 180 degree bends with decreasing cross-sectional area by numerical method. Calculated pressure and velocity, Reynolds stress distributions are compared to the experimental data. Turbulence model employed are low Reynolds number k-epsilon model and algebraic stress model. The results show that the main vortex generated from the inlet part of the bend maintained to outlet of the bend because of the contraction of cross-sectional area. The rate of increase of turbulent kinetic energy through the bend are lower than that of mean flow. Secondary flow strength of the flow is lower about 60% than that of square duct flow.

A Study on Cross-Cultural Validation of Web-Based User Information Satisfaction (Flow) Measurement Model (웹기반 정보시스템 이용자정보만족도(Flow) 측정모델의 교차문화 검증에 관한 연구)

  • Jung, Jin-Taek
    • Journal of Digital Convergence
    • /
    • v.6 no.2
    • /
    • pp.157-164
    • /
    • 2008
  • The current research utilized as its target population who are current users of web based information system in Korea. The research validated the dimensions by studying he constructs within the context of the web based information system user population. Correlation was found between Flow dimensions retained as components of a ross-Cultural Model. It was determined that these two dimensions-Intrinsic Interest and Control-are significant predictors of user success. The Cross-Cultural Model was validated, and it is therefore suggested as a basis for further study of user success indicators in he cross-cultural enterprise environment.

  • PDF

Numerical Study on the Turbulent Flow in the $180^\circ$ Bends increasing Cross-sectional Aspect Ratio (단면의 폭이 증가하는 $180^\circ$ 곡덕트 내 난류유동의 수치해석적 연구)

  • 김원갑;김철수;최영돈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.9
    • /
    • pp.804-810
    • /
    • 2004
  • This paper reports the characteristics of the three dimensional turbulent flow by numerical method in the 180 degree bends with increasing cross-sectional area. Calculated pressure and velocity, Reynolds stress distributions are compared to the experimental data. Turbulence model employed are low Reynolds number $textsc{k}$-$\varepsilon$ model and algebraic stress model(ASM). The results show that the main vortex generated from the inlet part of the bend maintained to outlet of the bend and vortices are continually developed at the inner wall region. The distribution of turbulent kinetic energy along the bend are increase up to 120$^{\circ}$ because of increment of cross-sectional area. Secondary flow strength of the flow is lower about 60% than that of square duct flow.

Estimation of Leak Rate Through Cracks in Bimaterial Pipes in Nuclear Power Plants

  • Park, Jai Hak;Lee, Jin Ho;Oh, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1264-1272
    • /
    • 2016
  • The accurate estimation of leak rate through cracks is crucial in applying the leak before break (LBB) concept to pipeline design in nuclear power plants. Because of its importance, several programs were developed based on the several proposed flow models, and used in nuclear power industries. As the flow models were developed for a homogeneous pipe material, however, some difficulties were encountered in estimating leak rates for bimaterial pipes. In this paper, a flow model is proposed to estimate leak rate in bimaterial pipes based on the modified Henry-Fauske flow model. In the new flow model, different crack morphology parameters can be considered in two parts of a flow path. In addition, based on the proposed flow model, a program was developed to estimate leak rate for a crack with linearly varying cross-sectional area. Using the program, leak rates were calculated for through-thickness cracks with constant or linearly varying cross-sectional areas in a bimaterial pipe. The leak rate results were then compared and discussed in comparison with the results for a homogeneous pipe. The effects of the crack morphology parameters and the variation in cross-sectional area on the leak rate were examined and discussed.

Cross Flow Characteristics of the Core Simulator in SMART Reactor Flow Distribution Test Facility (SMART 유동분포시험장치 노심모의기에서의 횡방향 유동 특성)

  • Yoon, Jung;Kim, Young-In;Chung, Young-Jong;Lee, Won-Jae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.5-11
    • /
    • 2012
  • To identify the flow characteristics of the SMART reactor, a flow distribution model test and a numerical simulation are performed in KAERI. Among several part of the SMART reactor, the fuel assemblies are simulated using simulators because of the complexity. The geometries of the core in the SMART reactor and simulator are different, but some similarities are maintained such as the ratio of pressure drop in the vertical and cross directions. There are cross flow holes in each core simulator to reproduce the cross flow of SMART fuel assemblies. To know the flow characteristics of the cross flow, numerical analysis is performed. As the cross flow area is decreased, the pressure drop between inlet and outlet is decreased. Also, when the flow imbalance between two core simulators is constant, the cross flow area does not significantly affect the cross flow.

A coupled vibration model of double-rod in cross flow for grid-to-rod fretting wear analysis

  • H. Huang;T. Liu;P. Li;Y.R. Yang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1407-1424
    • /
    • 2024
  • In Pressurized Water Reactors, most of the failed fuel rods are often observed at the periphery of the fuel assembly, especially near the core baffle. The rod vibration-induced fretting wear is a significant failure mechanism strongly correlated with the coolant and support conditions. This paper presents a coupled vibration model of double-rod to predict the grid-to-rod fretting (GTRF) wear. A motion-dependent fluid force model is used to simulate the coolant cross flow, the gap constraints with asymmetric stiffness between spring and dimple on the vibration form, and the fretting wear are discussed. The results show the effect of the coupled vibration on the deterioration of wear, providing a sound theoretical explanation of some failure phenomena observed in the previous experiment. Exploratively, we analyze the impact of the baffle jet on the GTRF wear, which indicates that the high-velocity cross-flow will significantly affect the vibration forms while sharply changing the wear behavior.

Prediction of Cross Flow Fan Flow Using an Unstructured Finite Volume Method (비정렬 유한 체적법을 이용한 횡류홴 유동장 해석)

  • Kang, Dong-Jin;Bae, Sang-Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.3 s.30
    • /
    • pp.7-15
    • /
    • 2005
  • A Navier-Stokes code has been developed to simulate the flow through a cross flow fan. It is based on an unstructured finite volume method and uses moving grid technique to model the rotation of the fan. A low Reynolds number turbulence model is used to calculate eddy viscosity. The basic algorithm is SIMPLE. Numerical simulations over a wide range of flow rate aye carried out to validate the code. Comparison of all numerical solutions with experimental data confirms the validity of the present code. Present numerical solutions show a noticeable improvement over a previous numerical method which is based on a model of body force to simulate the rotation of the impeller.