• Title/Summary/Keyword: Cross angle

Search Result 1,088, Processing Time 0.022 seconds

Effect of Cold Temperature Dry and Elevated Temperature Wet on Mechanical Properties of CFRP Composites (냉각($-55^{\circ}C$) 및 고온다습 조건($82.2^{\circ}C$)이 탄소섬유강화 복합재의 기계적 특성에 미치는 영향 연구)

  • Kim, Hyo-Jin;Lee, Sih-Joong;Han, Sang-Ho;Kim, Sang-Kuk;Park, Seong-Jun
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.60-65
    • /
    • 2009
  • The mechanical behavior of carbon fiber reinforced polymeric (CFRP) composites was investigated. Both strength and modulus were measured at room temperature dry, cold temperature dry, $-55^{\circ}C$, and elevated temperature wet, $82.2^{\circ}C$ on seven different laminate configurations consisting of $[0_6]_T$, $[90_{12}]_T$, $[0_{16}]_T$ and $[90_{16}]_T$ unidirectional laminates, $[{\pm}45]_{5S}$ angle-ply laminate, $[0/90_{12}/0]_T$ cross-ply laminate, a 36-ply laminate $[0/45/-45/45/-45/0]_{3S}$. Based on the experimental data presented, it is shown that the strength at cold temperature dry, $-55^{\circ}C$ is increased with the brittleness of fiber or matrix. Moreover, it is shown that both shear strength and modulus at elevated temperature wet, $82.2^{\circ}C$ are decreased by the cause of interfacial deterioration between fiber and matrix with moisture absorption.

Effect of post-treatment routes on the performance of PVDF-TEOS hollow fiber membranes

  • Shadia R. Tewfik;Mohamed H. Sorour;Hayam F. Shaalan;Heba A. Hani;Abdelghani G. Abulnour;Marwa M. El Sayed;Yomna O. Mostafa;Mahmoud A. Eltoukhy
    • Membrane and Water Treatment
    • /
    • v.14 no.2
    • /
    • pp.85-93
    • /
    • 2023
  • Membrane separation is widely used for several applications such as water treatment, membrane reactors and climate change. Cross-linked organic-inorganic hybrid polyvinylidene fluoride (PVDF) / Tetraethyl orthosilicate (TEOS) was adopted for the preparation of optimized hollow membrane (HFM) for membrane distillation or other low pressure separators for mechanical properties and permeability under varying pretreatment schemes. HFMs were prepared on semi-pilot membrane fabrication system. Novel adopted post-treatment schemes involved soaking in glycerol, magnesium sulphate (MgSO4), sodium hypochlorite (NaOCl), and isopropanol for different durations. All fibers were characterized for morphology using a scanning electron microscope (SEM), surface roughness using atomic force microscope (AFM), elemental composition by examining Energy Dispersive Spectroscopy (EDS), water contact angle (CA°) and porosity. The performance of the fibers was evaluated for pure water permeation flux (PWF). Post-treatment with MgSO4 gave the highest both tensile modulus and flux. Assessment of properties and performance revealed comparable results with other organic-inorganic separators, HF or flat. In spite of few reported data on post treatment using MgSO4 in presence of TEOS, this proves the potential of low cost treatment without negative impact on other membrane properties. The flux is also comparable with hypochlorite which manifests substantial precaution requirements in actual industrial use.The relatively high values of flux/bar for sample treated with TEOS, post treated with MgSO4 and hypochlorite are 88 and 82 LMH/bar respectively.

Response of steel pipeline crossing strike-slip fault in clayey soils by nonlinear analysis method

  • Hadi Khanbabazadeh;Ahmet Can Mert
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.409-424
    • /
    • 2023
  • Response of the pipeline crossing fault is considered as the large strain problem. Proper estimation of the pipeline response plays important role in mitigation studies. In this study, an advanced continuum modeling including material non-linearity in large strain deformations, hardening/softening soil behavior and soil-pipeline interaction is applied. Through the application of a fully nonlinear analysis based on an explicit finite difference method, the mechanics of the pipeline behavior and its interaction with soil under large strains is presented in more detail. To make the results useful in oil and gas engineering works, a continuous pipeline of two steel grades buried in two clayey soil types with four different crossing angles of 30°, 45°, 70° and 90° with respect to the pipeline axis have been considered. The results are presented as the fault movement corresponding to different damage limit states. It was seen that the maximum affected pipeline length is about 20 meters for the studied conditions. Also, the affected length around the fault cutting plane is asymmetric with about 35% and 65% at the fault moving and stationary block, respectively. Local buckling is the dominant damage state for greater crossing angle of 90° with the fault displacement varying from 0.4 m to 0.55 m. While the tensile strain limit is the main damage state at the crossing angles of 70° and 45°, the cross-sectional flattening limit becomes the main damage state at the smaller 30° crossing angles. Compared to the stiff clayey soil, the fault movement resulting 3% tensile strain limit reach up to 40% in soft clayey soil. Also, it was seen that the effect of the pipeline internal pressure reaches up to about 40% compared to non-pressurized condition for some cases.

Experimental Study on Global Buckling of Singly Symmetric FRP Members (일축대칭 FRP 부재의 전체좌굴에 관한 실험적 연구)

  • Lee, Seungsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.99-106
    • /
    • 2006
  • Due to single symmetry of cross section, T-shaped members are likely to buckle in a flexural-torsional mode when they are subjected to axial compression. Therefore, the flexural-torsional buckling can be regarded as a governing mode of global buckling. An experimental program has been carried out to investigate the flexural-torsional buckling behavior of pultruded T-shaped members. Two types of pultruded members were tested in the experiment, and they were made of either E-glass/vinylester or E-glass/polyester. Lay-up and thickness of reinforcing layers, volume fractions of each constituents in layers, mechanical properties were experimentally determined. Two sets of knife edge fixure were used to simulate simple support condition for flexure and twisting, and the lateral displacements and the angle of twist were measured using three potentiometers. Every specimen buckled in a flexural-torsional mode, and most of the specimens showed post-buckling strength.

Real-Time Implementation of Active Classification Using Cumulative Processing (누적처리기법을 이용한 능동표적식별 시스템의 실시간 구현)

  • Park, Gyu-Tae;Bae, Eun-Hyon;Lee, Kyun-Kyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.87-94
    • /
    • 2007
  • In active sonar system, aspect angle and length of a target can be estimated by calculating the cross-correlation between left and right split-beams of a LFM(Linear Frequency Modulated) signal. However, high-resolution performances in bearing and range are required to estimate the information of a remote target. Because a certain higher sampling frequency than the Nyquist sampling frequency is required in this performance, an over-sampling process through interpolation method should be required. However, real-time implementation of split-beam processing with over-sampled split-beam outputs on a COTS(commercial off-the-shelf) DSP platform limits its performance because of given throughput and memory capacity. This paper proposes a cumulative processing algorithm for split-beam processing to solve the problems. The performance of the proposed method was verified through some simulation tests. Also, the proposed method was implemented as a real-time system using an ADSP-TS101.

Curved finite strip and experimental study of thin stiffened composite cylindrical shells under axial compression

  • Mojtaba Rafiee;Hossein Amoushahi;Mehrdad Hejazi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.181-197
    • /
    • 2024
  • A numerical method is presented in this paper, for buckling analysis of thin arbitrary stiffened composite cylindrical shells under axial compression. The stiffeners can be placed inside and outside of the shell. The shell and stiffeners are operated as discrete elements, and their interactions are taking place through the compatibility conditions along their intersecting lines. The governing equations of motion are obtained based on Koiter's theory and solved by utilizing the principle of the minimum potential energy. Then, the buckling load coefficient and the critical buckling load are computed by solving characteristic equations. In this formulation, the elastic and geometric stiffness matrices of a single curved strip of the shell and stiffeners can be located anywhere within the shell element and in any direction are provided. Moreover, five stiffened composite shell specimens are made and tested under axial compression loading. The reliability of the presented method is validated by comparing its numerical results with those of commercial software, experiments, and other published numerical results. In addition, by using the ANSYS code, a 3-D finite element model that takes the exact geometric arrangement and the properties of the stiffeners and the shell into consideration is built. Finally, the effects of Poisson's ratio, shell length-to-radius ratio, shell thickness, cross-sectional area, angle, eccentricity, torsional stiffness, numbers and geometric configuration of stiffeners on the buckling of stiffened composite shells with various end conditions are computed. The results gained can be used as a meaningful benchmark for researchers to validate their analytical and numerical methods.

Relationship between Spinopelvic Parameters and Hip Function in Patients with Femoroacetabular Impingement at Diagnosis: A Cross-Sectional Study

  • Bernardo Aguilera-Bohorquez;Pablo Corea;Cristina Siguenza;Jochen Gerstner-Saucedo;Alvaro Carvajal;Erika Cantor
    • Hip & pelvis
    • /
    • v.35 no.1
    • /
    • pp.6-14
    • /
    • 2023
  • Purpose: The aim of this study was to determine correlation between the spinopelvic parameters in sitting and standing positions (sacral slope [SS], lumbar lordosis [LL], spinopelvic tilt [SPT], pelvic incidence [PI], and pelvic femoral angle [PFA]), with hip function assessed using the modified Harris hip scores (mHHs) in patients with symptomatic femoroacetabular impingement (FAI) at diagnosis. Materials and Methods: A retrospective study of 52 patients diagnosed with symptomatic FAI was conducted. Evaluation of the spinopelvic complex in terms of SS, LL, SPT, PI and PFA was performed using lateral radiographs of the pelvis and lumbosacral spine in standing and sitting positions. Assessment of hip function at diagnosis was performed using the mHHs. Calculation of spinopelvic mobility was based on the difference (Δ) between measurements performed in standing and sitting position. Results: The median time of pain evolution was 11 months (interquartile range [IQR], 5-24 months) with a median mHHs of 66.0 points (IQR, 46.0-73.0) at diagnosis. The mean change of LL, SS, SPT, and PFA was 20.9±11.2°, 14.2±8.6°, 15.5±9.0°, and 70.7±9.5°, respectively. No statistically significant correlation was observed between spinopelvic parameters and the mHHs (P>0.05). Conclusion: Radiological parameters of the spinopelvic complex did not show correlation with hip function at the time of diagnosis in patients with symptomatic FAI. Conduct of further studies will be required in the effort to understand the effect of the spinopelvic complex and its compensatory mechanics, primarily between the hip and spine, in patients with FAI before and after hip arthroscopy.

A Study on the Structural Behavior of Fabricated Columns Reinforced with Steel sheet Forms and Angles (ㄱ형강과 강판을 이용한 조립 기둥의 거동에 관한 연구)

  • Kim, Sung-Bae;Lee, Chang-Nam;Yoon, Yeong-Ho;Kim, Sang-Seup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.89-98
    • /
    • 2007
  • The purpose of this study is to experimentally evaluate the structural behavior of built-up type column consisted of angles and y-shape steel sheet forms for filling concrete. This column for minimizing form working and reinforcement placing is able to improve capacity of construction and reduce the term of works. Thirteen 1/3 scaled columns were fabricated. The main variables are 1) effect of angles and y-shape steel sheets of fabricated columns, 2) slenderness of column, 3) eccentricity of column. The results show that the experimental capacity of built-up type column is similar to theoretical one by reinforcement concrete design code. The maximum loads increase according to the rate of angle to cross section of column.

Free Vibrations of Circular Uniform Strips Resting on Two Parameter Elastic Foundation (두 변수 탄성지반으로 지지된 원호형 등단면 띠기초의 자유진동)

  • Lee, Jong-Cheon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.125-134
    • /
    • 2009
  • This paper deals with the free vibrations of circular strip foundations which have uniform solid rectangular cross-section. The ground which supports circular strips was modeled as the two parameter elastic foundation. Differential equations governing the flexural-torsional free vibrations of circular strips supported by such foundation were derived, and solved numerically for obtaining the natural frequencies and mode shapes. Boundary condition of free-free ends was considered for numerical examples. Four lowest natural frequencies according to the variations of five system parameters i.e. subtended angle, depth ratio, contact ratio, elasticity ratio and soil parameter are reported in the non-dimensional forms. Also, typical mode shapes of both deformations and stress resultants are presented in the figures. Experiment was conducted for validating the theory developed in this study.

Characterization and performance of post treated PVDF hollow fiber membrane

  • Eman S. Sayed;Hayam F. Shaalan;Magda I. Marzouk;Heba A. Hani
    • Membrane and Water Treatment
    • /
    • v.15 no.2
    • /
    • pp.79-88
    • /
    • 2024
  • Modification of Polyvinylidene fluoride (PVDF) hollow fiber membranes (HFMs) characteristics and performance were investigated via post treatment using different oxidants. sodium hypochlorite (NaOCl), hydrogen peroxide (H2O2) and potassium persulfate (KPS). Fourier transform infrared (FTIR) and Proton nuclear magnetic resonance (1H-NMR) results revealed no structural differences after post treatment. Cross-sectional micrographs show finger-like structures at the outer and inner walls of the HFMs and sponge-like structures in middle, where NaOCl and KPS post treated fibers exhibited a decrease in finger-like structures in addition to aggregates appearing on the surface, consequently leading to an increase in the surface roughness (Ra) from 48 nm to 52.8nm and 56 nm, respectively. Hydrogen peroxide post treatment only was observed to decrease the water contact angle from 98° to 81.4°. It was also observed that the elongation at break and the modulus deceased after NaOCl post treatment from 34.5 to 28.5% and from 19.3 Mpa to 16.6 Mpa, respectively. Moreover, pure water flux after H2O2 post treatment increased from 87.8 LMH/bar to 113 LMH/bar at 0.45 bar, while no changes were detected for the methylene blue dye rejection (74%) between raw and hydrogen peroxide post treated fibers at the same pressure. According to the findings hydrogen peroxide post treated PVDF HFMs have the most uniform surfaces, with almost no alterations in structural and mechanical properties or porosities with enhanced hydrophilicity and pure water flux maintaining appropriate rejection. Therefore, it is considered an efficient surface modifying agent for UF/NF membranes or low-pressure separators.