• Title/Summary/Keyword: Cross Sectional Stiffness

Search Result 100, Processing Time 0.023 seconds

One-Dimensional Beam Modeling of a Composite Rotor Blade (복합재 블레이드의 1차원 보 모델링)

  • Lee, Min-Woo;Bae, Jae-Sung;Lee, Soo-Yong;Lee, Seok-Joon;Jeon, Boo-Il
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • The three-dimensional finite element modeling of a composite rotor blade is very hard and requires much computation effort. The efficient method to model a composite beam is necessary for the dynamic and aeroelastic analyses of rotor blades. In this study, the beam modeling method of a composite rotor blade is studied using VABS. The computer program, VABS (Variational Asymptotic Beam Section Analysis), uses the variational asymptotic method to split a 3-D nonlinear elasticity problem into 2-D cross-sectional analysis and 1-D nonlinear beam problem. The VABS can produce the sectional stiffness coefficients of composite rotor blades with various cross section and initial twist/curvatures, and recover the original 3-D distribution of displacement/strain/stress fields. The results of various cross section beams show that VABS gives us the accurate results comparared to commercial codes and does not need much computation effort. It can be concluded that VABS provides the efficient method to establish the FE model of a composite rotor blade.

  • PDF

Changes of Masticatory Muscle Tone and Stiffness According to Head Posture

  • Wang, Joongsan
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.2
    • /
    • pp.1763-1767
    • /
    • 2019
  • Background: Although previous researches have developed interventions for neck problems, headache, and temporomandibular disorder in patients with forward head posture (FHP), changes in masticatory muscle tone or stiffness as FHP worsening have not been investigated. Objective: To examine changes in masticatory muscle tone and stiffness through craniovertebral angle (CVA). Design: Cross sectional study Methods: The subjects were 21 healthy males with normal head posture. Three CVA were established for posture measurement in which the bilateral anterior temporal and masseter muscles were measured during the subjects maintained a series of postures. Results: The Right masseter muscle significantly increased in stiffness with advancing FHP (p < 0.05). No significant changes were observed in the muscle tone or stiffness of any other masticatory muscles, and no significant differences were found in bilateral masticatory muscle tone or stiffness in each measurement posture. Conclusions: This study suggests that the increased stiffness of the right masseter muscle as the FHP worsened requires consideration in physical therapy assessment and intervention.

Strain Recovery Analysis of Non-uniform Composite Beam with Arbitrary Cross-section and Material Distribution Using VABS (VABS를 이용한 임의의 단면과 재료 분포를 가진 비균일 복합재료 보의 변형률 복원 해석)

  • Jang, Jun Hwan;Ahn, Sang Ho
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.204-211
    • /
    • 2015
  • This paper presents a theory related to a two-dimensional linear cross-sectional analysis, recovery relationship and a one-dimensional nonlinear beam analysis for composite wing structure with initial twist. Using VABS including a related theory, the design process of the composite rotor blade has been described. Cross-sectional analysis was performed at cutting point including all the details of geometry and material. Stiffness matrix and mass matrix were linked to each section to make 1D beam model. The 3D strain distributions within the structure were recovered based on the global behavior of the 1D beam analysis and visualize numerical results.

Wind-resistant performance of cable-supported bridges using carbon fiber reinforced polymer cables

  • Zhang, Xin-Jun;Ying, Lei-Dong
    • Wind and Structures
    • /
    • v.10 no.2
    • /
    • pp.121-133
    • /
    • 2007
  • To gain understanding of the applicability of carbon fiber reinforced polymer (CFRP) cable in cable-supported bridges, based on the Runyang Bridge and Jinsha Bridge, a suspension bridge using CFRP cables and a cable-stayed bridge using CFRP stay cables are schemed, in which the cable's cross-sectional area is determined by the principle of equivalent axial stiffness. Numerical investigations on the dynamic behavior, aerostatic and aerodynamic stability of the two bridges are conducted by 3D nonlinear analysis, and the effect of different cable materials on the wind resistance is discussed. The results show that as CFRP cables are used in cable-supported bridges, (1) structural natural frequencies are all increased, and particularly great increase of the torsional frequency occurs for suspension bridges; (2) under the static wind action, structural deformation is increased, however its aerostatic stability is basically remained the same as that of the case with steel cables; (3) for suspension bridge, its aerodynamic stability is superior to that of the case with steel cables, but for cable-stayed bridge, it is basically the same as that of the case with steel stay cables. Therefore as far as the wind resistance is considered, the use of CFRP cables in cable-supported bridges is feasible, and the cable's cross-sectional area should be determined by the principle of equivalent axial stiffness.

Cross-sectional Design and Stiffness Measurements of Composite Rotor Blade for Multipurpose Unmanned Helicopter (다목적 무인헬기 복합재 로터 블레이드의 단면 구조설계 및 강성 측정)

  • Kee, Young-Jung;Kim, Deog-Kwan;Shin, Jin-Wook
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.52-59
    • /
    • 2019
  • The rotor blade is a key component that generates the lift, thrust, and control forces required for helicopter flight by the torque transmitted through the hub and the blade pitch angle control, and should be designed to factor vibration characteristics so that there is no risk of resonance with structural safety. In this study, the structural design of the main rotor blade for MPUH(Multi-Purpose Unmanned Helicopter) was conducted and the sectional stiffness measurement of the fabricated blade was performed. The evaluation of the vibration characteristics of the main rotor system was then conducted factoring the measured stiffness distribution. The interior of the rotor blade comprised of the skin, spar, and torsion box, and carbon and glass fiber composites were applied. The Ksec2D program was applied to predict the stiffness of blade, and the results were compared to the measured data. CAMRADII, a comprehensive rotorcraft analysis program, was applied to investigate the natural frequency trends and resonance risks due to the rotor rotation.

An Optimum Design of Herringbone Grooved Journal Bearings for Spindle Motor of Hard Disk Drive System (HDD 스핀들용 빗살무늬 저널베어링의 최적설계)

  • ;Y. Muraki;M. Tanaka
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.530-532
    • /
    • 2002
  • This paper presents an optimum design of herringbone grooved journal bearing for spindle motor of hard disk drive (HDD) system. In addition to the conventional “rectangular” groove, various groove profiles are designed. The stiffness and damping coefficients of the oil film and frictional torque are calculated and compared for tile various groove profiles. The “circular”, “valley”, and “reversed saw tooth” grooves do not produce high direct stiffness, since they partly increase the groove depths in the direction of lubricant flow, causing to reduce the pumping action of the bearing. The maximum direct stiffness can be obtained by the “rectangular”, “saw tooth”, and “step” grooves. With the same cross sectional area of the grooves, these three grooves have the same maximum stiffness, damping coefficients, and frictional torque. Among these recommendable grooves, the saw tooth groove may keep its original profile for long, enduring metal-to-metal contact during startup and shutdown.

  • PDF

Cross-sectional Constants of Thin-walled Composite Blades with Elliptical Profiles (타원형 단면형상을 갖는 복합재료 박판 블레이드의 단면상수 계산)

  • 박일주;이주영;정성남;신의섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.95-98
    • /
    • 2003
  • In this work, a closed-form analysis is performed to obtain the stiffness coefficients of thin-walled composites beams with elliptical profiles. The analytical model includes the effects of elastic couplings, shell wall thickness, torsion warping and constrained warping. Reissner's semi-complementary energy functional is used to derive the beam force-displacement relations. The theory is validated against MSC/NASTRAN results for coupled composites beams with single-cell elliptical sections. Very good correlation has been noticed for the test cases considered.

  • PDF

Minimum stiffness of bracing for multi-column framed structures

  • Aristizabal-Ochoa, J. Dario
    • Structural Engineering and Mechanics
    • /
    • v.6 no.3
    • /
    • pp.305-325
    • /
    • 1998
  • A method that determines the minimum stiffness of baracing to achieve non-sway buckling conditions at a given story level of a multi-column elastic frame is proposed. Condensed equations that evaluate the required minimum stiffness of the lateral and torsional bracing are derived using the classical stability functions. The proposed method is applicable to elastic framed structures with rigid, semirigid, and simple connections. It is shown that the minimum stiffness of the bracing required by a multi-column system depends on: 1) the plan layout of the columns; 2) the variation in height and cross sectional properties among the columns; 3) the applied axial load pattern on the columns; 4) the lack of symmetry in the loading pattern, column layout, column sizes and heights that cause torsion-sway and its effects on the flexural bucking capacity; and 5) the flexural and torsional end restrains of the columns. The proposed method is limited to elastic framed structures with columns of doubly symmetrical cross section with their principal axes parallel to the global axes. However, it can be applied to inelastic structures when the nonlinear behavior is concentrated at the end connections. The effects of axial deformations in beams and columns are neglected. Three examples are presented in detail to show the effectiveness of the proposed method.

Modeling of two-cell thin-walled beams using variational asymptotic methods (변분적 점근법을 사용한 이중 세포를 갖는 박벽보의 모델링)

  • Park, Jae-Sang;Kim, Ji-Hwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.198-201
    • /
    • 2005
  • This study investigates the difference between single-cell and multi-cell cross-sections of thin-walled beams. The variationally and asymptotically consistent theory is used in order to model the two-cell thin- walled beam. The theory is based on an asymptotical analysis of two-dimensional shell energy. In addition, the method allows for the development of closed-form expressions for the displacement, stress field and beam stiffness coefficients. The numerical results show the difference between the cross-sectional stiffness of single-cell and that of multi-cell.

  • PDF

Tests of integrated ceilings and the construction of simulation models

  • Lyu, Zhilun;Sakaguchi, Masakazu;Saruwatari, Tomoharu;Nagano, Yasuyuki
    • Advances in Computational Design
    • /
    • v.4 no.4
    • /
    • pp.381-395
    • /
    • 2019
  • This paper proposes a new approach to model the screw joints of integrated ceilings via the finite element method (FEM). The simulation models consist of the beam elements. The screw joints used in the main bars and cross bars and in the W bars and cross bars are assumed to be rotation springs. The stiffness of the rotation springs is defined according to the technical standards proposed by the National Institute for Land and Infrastructure Management of Japan. By comparing the results of the sheer tests and the simulation models, the effectiveness and efficiency of the simulation models proposed in this paper are verified. This paper indicates the possibility that the seismic performance of suspended ceilings can be confirmed directly via beam element models using FEM if the stiffnesses of the screw joints of the ceiling substrates are appropriately defined. Because cross-sectional shapes, physical properties, and other variables of the ceiling substrates can be easily changed in the models, it is expected that suspended ceiling manufactures will be able to design and confirm the seismic performance of suspended ceilings with different cross-sectional shapes or materials via computers, instead of spending large amounts of time and money on shake table tests.