• Title/Summary/Keyword: Cross Polarization

Search Result 245, Processing Time 0.03 seconds

Performance improvement of XCP-OFDM system using cross-handed circular polarization in frequency offset environments (주파수 오프셋 환경에서의 역선회 원편파를 이용한 XCP-OFDM 시스템의 성능 개선)

  • 김병옥
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.1
    • /
    • pp.49-56
    • /
    • 2004
  • An OFDM system using cross-handed circular Polarization(XCP-OFDM) is newly proposed in his paper. The proposed XCP-OFDM system divides the subchannels into a right-handed circular polarization(RHP channel and a left-handed circular polarization(LHCP) channel that alternate each other. Therefore, the overlaps between subcarriers in XCP-OFDM system can be reduced to a great extend compared to the conventional OFDM system. By this reason, it can improve the orthogonality and reduce the inter-channel interference due to frequency offset. In this paper, it can be seen that the proposed XCP-OFDM system shows robust against frequency offset.

A Study on the Space Charge Polarity Measurement Teasurement Technology of Cross-Linked Polyethylene for Power Cable (전력케이블용 가교폴리에틸렌의 공간전하 극성측정기술에 관한 연구)

  • 국상훈;서장수;김병인;박중순
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.6
    • /
    • pp.23-31
    • /
    • 1992
  • Charged particle in the polymers is supposed to affect the electrical conduction and to lead them th dielectrical breakdown finally. So we measured the space charge distribution made by application of high electric field and evaluated the polarity of the charged particle affected on electrical conduction and space charge formed in the insulating materials by using temperature gradient thermally stimulated current measurement method(TG-TSC measurement). As a result, in the cross-linked polyethylene, A-peak was caused from dipole polarization, C-peak was caused from ionic space charge polarization and D-peak was injected trap hole. Also we found it crossible the evaluated the polarity of injected trap carrier and electron(or hole) of carrier trap in the cross-lined polyethylene. We found that ${\gamma}$-ray irradiated low density polyethylene had a relation to the electronic trap and we also could get the value of electric field distribution in the samples of which evaluation was available.

  • PDF

Estimation of Polarization Ratio for Sea Surface Wind Retrieval from SIR-C SAR Data

  • Kim, Tae-Sung;Park, Kyung-Ae
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.729-741
    • /
    • 2011
  • Wind speeds have long been estimated from C-band VV-polarized SAR data by using the CMOD algorithms such as CMOD4, CMOD5, and CMOD_IFR2. Some SAR data with HH-polarization without any observations in VV-polarization mode should be converted to VV-polarized value in order to use the previous algorithms based on VV-polarized observation. To satisfy the necessity of polarization ratio (PR) for the conversion, we retrieved the conversion parameter from full-polarized SIR-C SAR image off the east coast of Korea. The polarization ratio for SIR-C SAR data was estimated to 0.47. To assess the accuracy of the polarization ratio coefficient, pseudo VV-polarized normalized radar cross section (NRCS) values were calculated and compared with the original VV-polarized ones. As a result, the estimated psudo values showed a good agreement with the original VV-polarized data with an root mean square error by 0.99 dB. We applied the psudo NRCS to the estimation of wind speeds based on the CMOD wind models. Comparison of the retrieved wind field with the ECMWF and NCEP/NCAR reanalysis wind data showed relatively small rms errors of 1.88 and 1.91 m/s, respectively. SIR-C HH-polarized SAR wind retrievals met the requirement of the scatterometer winds in overall. However, the polarization ratio coefficient revealed dependence on NRCS value, wind speed, and incident angle.

Space-Polarization Division Multiple Access System with Limited Feedback

  • Joung, Heejin;Jo, Han-Shin;Mun, Cheol;Yook, Jong-Gwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1292-1306
    • /
    • 2014
  • This paper proposes a space-polarization division multiple access (SPDMA) system that has limited feedback channels. The system simultaneously serves data streams to multiple mobile users through dual-polarized antenna arrays, by using pre-determined sets of precoding vectors that are orthogonal in both space and polarization domains. To this end, a codebook whose elements are sets of the precoding vectors is systematically designed based on the discrete Fourier transform (DFT) matrix and considering the power imbalance of polarized channels. Throughput of the SPDMA system is evaluated and compared to that of space division multiple access (SDMA) system, according to the various parameters including cross polarization discrimination (XPD). The results show that the throughput of SPDMA system outperforms that of SDMA in the environments of high XPD with many mobile users.

Characteristics of Optical Current Sensors by Sensor Design

  • Kim, Young-Min;Park, Jung-Hwan;Lee, Kwang-Sik;Kim, Jung-Bae;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.80-87
    • /
    • 2007
  • This paper will suggest that the 1 cross orthogonal loop type sensor improves on the orthogonal loop form sensor-head, which is available a calibration of the linear birefringence, when a fiber optic current sensor was composed. An output characteristics of the 1 cross orthogonal loop form, a general closed loop form, the orthogonal loop form are compared by the IEC(International Electrotechnical Commission) 60044-8 standard, and the state of polarization is compared with three forms. As a result, when the closed loop form was changed to the orthogonal loop form, retardation decreased 15.3[%]. When the closed loop form was changed to the 1 cross orthogonal loop type, the retardation decreased 33.8[%]. As a result of the Faraday Effect measurement, the 1 cross orthogonal loop form has the highest output characteristic and the lowest error ratio. It met the 0.5 class of the IEC 60044-8 standard. Thus, in application of the 1cross orthogonal loop form, the possibility to develop high reliability fiber optic current sensors that have a high output and stable error ratio rises is increased.

Modified Cross-Aperture Coupled Microstrip Circular Polarization Array Antenna for WLAN (WLAN 대역의 변형된 십자형 개구 결합 마이크로스트립 원형 편파 배열 안테나)

  • Seo, Yong-Seok;Ahn, Jung-Mo;Jung, Jin-Woo;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1316-1324
    • /
    • 2009
  • In this paper, cross-aperture coupled microstrip circular polarization antenna is proposed for 5.8 GHz WLAN(Wireless Local Area Network). A single antenna consists of square patch and slots are located in series feed line with $\lambda_g$/4 phase different which make current direction maximum and minimum repeatedly to generate RHCP(Right Handed Circularly Polarization). We are proposed new structure that removed the section which intersected at a right angle and were composed to four separated slots. The proposed cross slots reduce back lobe of radiation pattern and improve antenna gain. Impedance bandwidth of the manufactured $2\times2$ array antenna is from 5.67 to 5.95 GHz and the maximum radiation gain is 10.59 dBi.

Design and Fabrication of Dual Linear Polarization Stack Antenna for 4.7GHz Frequency Band (4.7 GHz 대역에서 동작하는 이중 선형편파 적층 안테나의 설계 및 제작)

  • Joong-Han Yoon;Chan-Se Yu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.251-258
    • /
    • 2023
  • In this paper, we propose DLP(Dual Linear Polarization) stack antenna for private network. The proposed antenna has general stack structure and design airgap between two substrate to obtain the maximum gain. Also, to improve cross polarization isolation, two feeding port is designed to separate for each substrate. The size of each patch antenna is 17.80 mm(W1)×16.70 mm(L1) for lower patch and 18.56 mm(W2)×18.73 mm(L2) for upper patch, which is designed on the FR-4 substrate which thickness (h) is 1.6 mm, and the dielectric constant is 4.3, and which is 40.0 mm(W)×40.0 mm(L) for total size of substrate. From the fabrication and measurement results, bandwidths of 100 MHz (4.74 to 4.84 GHz) for feeding port 1, and 150 MHz (4.67 to 4.82 GHz) for feeding port 2 are obtained on the basis of -10 dB return loss and transmission coefficient S21 is got under the -20 dB. Also, cross polarization isolation between each feeding port obtained

A Series Feeding Cross-Aperture Coupled Microstrip Antenna for Improving Axial Ratio Bandwidth of Circular Polarization (원형편파의 축비 대역폭 개선을 위한 직렬 급전 십자개구 결합 마이크로스트립 안테나)

  • 김형락;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.4
    • /
    • pp.393-400
    • /
    • 2002
  • In this paper, a novel series feeding cross-aperture coupled microstrip antenna with the effect of hybrid feeding is proposed and demonstrated experimentally to improve narrow axial ratio bandwidth of cross-aperture coupled antenna with single feeding among the various methods for generating circular polarization. The validity of a proposed series feeding cross-aperture coupled microstrip antenna is shown by comparing experimental results between the reported and the proposed microstrip antenna, and 2${\times}$2 array microstrip antenna based on the proposed single microstrip antenna used sequential rotation technique to accomplish broader axial ratio bandwidth. In the proposed single and 2${\times}$2 array microstrip antenna, the measured axial ratio bandwidths are 110 ㎒(4.6%) and 420 ㎒(17.5%), maximum gains are 8.2 ㏈i and 12.5 ㏈i, 3 dB gain bandwidths are above 400 ㎒(16.7%), and impedance bandwidths for the VSWR<1.5 are 240 ㎒(10%) and 500 ㎒(20.8%), respectively.

A Study on 8 × 4 Dual-Polarized Array Antenna for X-Band Using LTCC-Based ME Dipole Antenna Structure (LTCC 기반 ME Dipole 안테나 구조를 활용한 X-Band 용 8 × 4 이중편파 배열안테나에 관한 연구)

  • Jung, Jae-Woong;Seo, Deokjin;Ryu, Jong-In
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.25-32
    • /
    • 2021
  • In this paper, the Magneto-Electric(ME) dipole array antenna with dual-polarization in the X-Band is proposed and it is implemented and measured. The proposed array antenna is composed of 32 single ME dipole antenna and a Teflon PCB. 1 × 1 ME dipole antenna is implemented dual-polarization by radiating vertical polarization and horizontal polarization from two pairs of radiators. 2-port feeding structures are realized by lamination process using LTCC. And, each port independently feeds the radiator through a Γ-shaped feeding strip with isolation between ports. The Teflon PCB used in the antenna array has a 4-layer structure, and 2-port is fed through the top and bottom layers. The λg/4 transformer is applied to the transmission line of the Teflon PCB for impedance matching of the arrayed antenna and the Teflon PCB, and the optimal parameters are obtained through simulation. The measured maximum antenna gains of port 1 was 18.2 dBi, Cross-pol was 1.0 dBi. And the measured maximum antenna gains of port 1 was 18.1 dBi, Cross-pol was 3.2 dBi.

ANALYSIS ON THE INFLUENCE OF XPD IN DUAL-POLARIZED TRANSMISSION

  • Park, Durk-Jong;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.784-787
    • /
    • 2006
  • Dual-polarized transmission is one of the effective methods to transmit such a high speed data thanks to two independent channel leads to the orthogonal feature between RHCP (Right-Hand Circular Polarization) and LHCP (Left-Hand Circular Polarization). However, in practical case, the transmitted signal by RHCP polarized antenna in satellite can be occurred at the output port of LHCP polarized antenna in ground station, vice versa. XPD (Cross-Polarization Discrimination) is the ratio of the signal level at the output of a receiving antenna that is nominally co-polarized to the transmitting antenna to the output of a receiving antenna of the same gain but nominally orthogonally polarized to the transmitting antenna. In this paper, the detailed estimation of XPD within the interface between satellite and ground station is written and the influence of XPD to link performance is also described.

  • PDF