• Title/Summary/Keyword: Cross Cylinder Method

Search Result 90, Processing Time 0.023 seconds

Discrete Vortex Simulation of Turbulent Separated and Reattaching Flow With Local Perturbation (국소교란이 있는 난류박리 재부착유동의 이산와류 수치해석)

  • 정용만;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.479-491
    • /
    • 1994
  • Discrete vortex method was applied for simulating an active control of turbulent leading- edge separation bubble. The leading-edge separation zone was perturbed by a time-dependent sinusoidal perturbation of different frequencies and levels. In order to describe the local sinusoidal perturbation at the separation point, a source pulsation vortex technique was proposed. The present two-dimensional vortex simulations were qualitatively compared with the experimental results for a blunt circular cylinder, where perturbation was introduced along the square-cut leading edge of the cylinder $(Kiya et al.^{(6,7)}).$ It was found that the reattachment length attained a minimum point at low levels of perturbation and two minima at a moderate higher perturbation frequency. The effects of local perturbation on the evolution of leading-edge separation bubble were scrutinized by comparing the perturbed flow with the natural flow. These comparisons were made for the distributions of mean velocity and its velocity fluctuations, intermittency and wall velocity. The motions of instantaneous reattachment in the space-time domain were demonstrated, which were also compared with the experimental findings. In order to investigate the reduction mehanism of reattachment length in the separation bubble, various cross-correlations for velocity and pressure and the relevant convection velocities were evaluated. It was observed that the convection velocity was closely associated with its corresponding pulsationg frequency.

Design of Passive-Type Radar Reflector

  • Yim, Jeong-Bin;Kim, Woo-Suk
    • Journal of Navigation and Port Research
    • /
    • v.27 no.3
    • /
    • pp.267-272
    • /
    • 2003
  • This paper describes design method of Passive-type Radar Reflector (PRR) which is to provide the requirement of newly revised 2000 SOLAS regulations on the Radar Reflector. The main target of this work is to find the optimum shape of a radar target having large Radar Cross Section (RCS). Through the RCS analysis based on the theoretical approach, two kinds of PRR models, RRR-F model for use in fisheries and PRR-S model for use in small sized ship, are designed and discussed their RCS performance. RCS measurement tests for the various sized samples are carried out in an anechoic chamber. As evaluation results it was clearly shown that the conventional sphere-type shows optimum shape in case of PRR-S, while the cylinder-type which consists of large sized corner clusters or zig-zag flat plats gives best performance in case of PRR-F.

An Analysis of Electromagnetic Wave Scattering for the Elliptic-Multi Layer Dielectric Cylinders (다층타원 유전체주의 전자파 산란 해석)

  • 박동희;김정기
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.3
    • /
    • pp.26-31
    • /
    • 1991
  • The scattering property of TMz illuminated a elliptic dielectric cylinders with arbitrary cross section are analyzed by the boundary element techniques. The boundary element equations are for- mulated via Maxwell's equations, weighted residual of Green's theorem, and the boundary conditions. The unknown surface fields on the boundaries are then calculated by the boundary element integral equations. Once the surface fields are found, the scattered fields in far-zone and scattering widths (SW) are readily determined. To show the validity and usefulness of this formulation, computations are compared with those obtained using analytical method and one layer circular cylinder. As exten- sion to arbitrary cross-sectioned cylinders, plane wave scattering from a elliptic dielectric cylinders are numerically analyzed. A general computer program has been developed using the quadratic ele- ments(Higher order borndary elements) and the Gaussian quadrature.

  • PDF

Numerical Investigation of Flow-pattern and Flow-induced Noise for Two Staggered Circular Cylinders in Cross-flow by LBM

  • Kim, Jeong-Whan;Oh, Sae-Kyung;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.82-93
    • /
    • 2008
  • The flowfield behind two cylinders and flow-induced noise generated from the cylinders in various arrangement are numerically investigated based on the finite difference lattice Boltzmann model with 21 velocity bits. which is introduced a flexible specific heat ${\gamma}$ to simulate diatomic gases like air. In an isolated cylinder with two type of mesh. some flow parameters such as Strouhal number $S_t$ and acoustic pressure ${\Delta}p$ simulated from the solution are given and quantitatively compared with those provided the previous works. The effects of the center-to-center pitch ratio $L_{cc}/d=2.0$ in staggered circular cylinders as shown in Fig. 1 and angles of incidence ${\alpha}=30^{\circ}(T_{cc}/d=0.5)$, $45^{\circ}(T_{cc}/d =0.707)$ and $60^{\circ}\;(T_{cc}/d=0.866)$, respectively, are studied. Our analysis focuses on the small-scale instabilities of vortex shedding, which occurs in staggered arrangement. With the results of drag $C_d$ and lift $C_l$ coefficients and vorticity contours. the mechanisms of the interference phenomenon and its interaction with the two-dimensional vortical structures are present in the flowfields under $Re\;{\le}\;200$. The results show that we successively capture very small pressure fluctuations, with the same frequency of vortex shedding, much smaller than the whole pressure fluctuation around pairs of circular cylinders. The upstream cylinder behaves like an isolated single cylinder, while the downstream one experiences wake-induced flutter. It is expected that, therefore, the relative position of the downstream cylinder has significant effects on the flow-induce noise, hydrodynamic force and vortex shedding characteristics of the cylinders.

Creative Design of Large-Angle Pin Type Load Cell for the Overload Limiter of a Movable Crane (이동식크레인의 과부하방지장치용 광각도 핀형 로드셀의 창의적 설계)

  • Han, Dong Seop;Ha, Jeong Min;Han, Geun Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • An overload limiter is used to prevent its overturning accident during an operation of a movable crane. Recently the indirect measuring method, which measures hoisting load and overturning moment of overload limiter, demands instead of the existing method, which measures only hoisting load. The indirectly measuring method is how to conduct the hoisting load and overturning moment as measuring the load of hydraulic cylinder for a luffing driving of boom. So we need to develop the multi-angular pin type load cell with the measuring angle of ${\pm}10$ degree instead of the existing load cell with the measuring angle of ${\pm}2$ degree. In this study the finite element analysis is conducted to evaluate the effect of the aspect ratio of measuring cross section on the measuring limit of the load cell to develop the many-angular pin type load cell. For this investigation, the aspect ratio of measuring cross section and load applying angle were adopted as design parameters and the stresses of measuring part were evaluated for each parameter.

Development of radar cross section analysis system of naval ships

  • Kim, Kook-Hyun;Kim, Jin-Hyeong;Choi, Tae-Muk;Cho, Dae-Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.20-32
    • /
    • 2012
  • A software system for a complex object scattering analysis, named SYSCOS, has been developed for a systematic radar cross section (RCS) analysis and reduction design. The system is based on the high frequency analysis methods of physical optics, geometrical optics, and physical theory of diffraction, which are suitable for RCS analysis of electromagnetically large and complex targets as like naval ships. In addition, a direct scattering center analysis function has been included, which gives relatively simple and intuitive way to discriminate problem areas in design stage when comparing with conventional image-based approaches. In this paper, the theoretical background and the organization of the SYSCOS system are presented. To verify its accuracy and to demonstrate its applicability, numerical analyses for a square plate, a sphere and a cylinder, a weapon system and a virtual naval ship have been carried out, of which results have been compared with analytic solutions and those obtained by the other existing software.

Characteristics of Accommodative Lags Determined by Objective and Subjective Methods and Their Correlation (타각적 및 자각적으로 결정된 조절래그의 특성과 상관관계)

  • Yu, Dong-Sik;Kwak, Ho-Weon;Roh, Byeong-Ho;Son, Jeong-Sik
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.3
    • /
    • pp.333-339
    • /
    • 2015
  • Purpose: The aim of this study was to evaluate clinical characteristics of subjective accommodative lags determined by fused cross-cylinder (subjective method), and an open-field autorefractor (objective method) under uncorrected and corrected conditions. Methods: Thirty three healthy subjects (26 males and 7 females aged $23.73{\pm}1.35$ years from 22 to 27 years) participated. Four methods were used to determine accommodative lag: (1) a subjective method with the fused cross-cylinder (FCC) under +2.00 D fogging lenses condition, (2) an objective method with the autorefractor under uncorrected condition (3) a corrected method (effective accommodative lag) using equations presented by Gwiazda et al. in objective methods, and (4) a corrected method using equations presented by Mutti et al. in objective methods. Results: The mean accommodative lags were 0.72 D for subjective method, 0.82 D for uncorrected objective method, 0.88 D for corrected method with Gwiazda's equations, and 0.78 D for corrected method with Mutti's equations. There were significant differences between the objective accommodative lags, but no significant differences between the objective and subjective accommodative lags. The effective accommodative lags showed significant correlations between phorias and refractive errors. The effective accommodative lag by Mutti's equations had a high correlation with uncorrected accommodative lags (r=0.99, p<0.001). Conclusions: The objective accommodative lag correlated with phorias and refractive errors. Especially, The effective accommodative lag using Mutti's equations may be considered for clinical availability and qualitative evaluation associated with symptoms.

Determination of the Strouhal number based on the aerodynamic behavior of rectangular cylinders

  • Choi, Chang Koon;Kwon, Dae Kun
    • Wind and Structures
    • /
    • v.3 no.3
    • /
    • pp.209-220
    • /
    • 2000
  • The Strouhal number is an important nondimensional number which is explanatory of aerodynamic instability phenomena. It takes on the different characteristic constant value depending upon the cross-sectional shape of the body being enveloped by the flow. A number of investigations into this subject, especially on the drag test, surface pressure test and hot-wire test, have been carried out under the fixed state of the body in the past. However, almost no investigations concerning the determination of the St on wind-induced vibration of the body have been reported in the past even though the aerodynamic behavior of the body is very important because the construction of wind-sensitive structures is recently on the sharp increase. Based on a series of wind tunnel tests, this paper addresses a new method to determine the Strouhal number of rectangular cylinder in the uniform flow. The central idea of the proposed method is that the Strouhal number can be obtained directly by the aerodynamic behaviors of the body through wind-induced vibration test. The validity of proposed method is evaluated by comparing with the results obtained by previous studies in three B/Ds at attack angle $0^{\circ}$ and a square cylinder with various attack angles. The values and trends of the proposed Strouhal numbers are in good agreements with values of previous studies. And also, the Strouhal numbers of B/D=1.5 and 2.0 with various attack angles are obtained by the proposed method and verified by other method. This proposed method is as good as any other previous methods to obtain the Strouhal number.

Computation of Radar Cross Section of Ship's Structure using a Physical Optics Method (물리 광학법을 이용한 함정구조물의 레이다 반사면적 계산)

  • Sam-Wook Choi;Sung-Youn Boo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.4
    • /
    • pp.82-91
    • /
    • 2000
  • In this study, a numerical scheme based on physical optics method is developed to predict RCS of perfectly conducting body. The scheme is verified through the comparisons of numerical values of cylinder and sphere with analytical ones. It is also applied to compute RCS of a fast naval craft. Major reflection of this ship at threat angle of 0 degrees is found to be due to superstructure and stern part of main hull. In order to investigate the shaping effects on the ship. inclination angles of the stern of main hull and superstructure are set to 12 degrees. The RCS of the ship with shaping is proven to be much reduced in comparison with one without shaping.

  • PDF

A NEW MEASUREMENT METHOD OF FEMORAL ANTEVERSION BASED ON THREE DIMENSIONAL MODELING (3차원 모델링을 이용한 대퇴 전염각의 측정)

  • Kim, June-S.;Park, Hee-J.;Choi, Kwang-S.;Choi, Kui-W.;Kim, Sun-I.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.141-144
    • /
    • 1997
  • Femoral neck anteversion is the angle between the neck and the knee axis projected on a plane perpendicular to the longitudinal axis. Conventional methods that use cross-sectional Computed Tomography(CT) images to estimate femoral anteversion have several problems because of the complex 3D structure of the femur. These are the ambiguity of defining the longitudinal axis, the femoral neck axis and condylar line, and the dependence on patient positioning. Especially the femoral neck axis that is known as a major source of error is hard to determine from a single or multiple 2D transverse images. So we developed a new method for measuring femoral anteversion by 3D modeling method. In this method, femoral head is modeled as a sphere. The center of femoral neck is the mid-point of the 2D reconstructed oblique image in the femoral neck part. Then neck axis is a line connecting foregoing two centers. We model the longitude of femur as a cylinder, and the long axis is defined from the fitted cylinder. The knee axis which is tangent to the back of the femoral condyles is easily determined by table-top method. By the definition of femoral anteversion, the femoral anteversion is easily calculated from this model.

  • PDF