• Title/Summary/Keyword: Cross Calibration

Search Result 215, Processing Time 0.031 seconds

Analysis of the Partial Discharge Pattern in XLPE Insulators using Distribution Statistical Models (분포통계모델에 의한 가교폴리에틸렌 절연체의 부분방전 패턴해석)

  • Kim Tag-Yong;Park Hee-Doo;Cho Kyung-Soon;Park Ha-Yong;Hong Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.947-952
    • /
    • 2006
  • It has been confirmed that the inner defect of insulator and the perfect diagnosis for aging are closely related to safe electric power transmission system and that the detection of accident and diagnosis technique turn out to be very important issues. But perfect diagnosis is difficult because discharge pattern is irregular. Thus, we investigated discharge pattern using the new distribution statistical models with cross-inked polyethylene(XLPE) specimens. Voltage was applied to power frequency by step method, and calibration of discharge was set to 50 pC. After the voltage was applied, it measured the discharge occurring during 10s. We investigated discharge pattern using the K-means analysis and Weibull function. We also investigated variation of centroid and shape parameter due to variation of voltage. As a result of analyzing K-means, it was confirmed that cluster including many object numbers was formed by the presence of void. And result of Weibull distribution, it was confirmed that shape parameter of discharge varied from 1.28 to 1.62 in no void specimens, and that shape parameter of discharge number varied from 1.28 to 1.62. In the void, shape parameter of discharge varied from 5.66 to 6.43, and shape parameter of discharge number varied from 5.05 to 5.08.

Measurement of Heavy Metals Using Portable XRF in Children's Playing Goods (Portable XRF를 이용한 어린이 야외 놀이용품의 중금속 측정)

  • Kim, Hyung-Jin;Baek, Young Man;Jung, Kyung Hoon;Hong, Suk Youn;Heo, Hwa Jin;Seong, Jin Uk;Park, Je Chul
    • Journal of Environmental Science International
    • /
    • v.22 no.4
    • /
    • pp.471-479
    • /
    • 2013
  • The present study was conducted to judge the applicability of field quality control by children's goods manufacturers by assessing the contents of heavy metals such as Pb and Cd in outdoor play goods for children through measurement using Portable XRF and comparing the results through detailed analyses using ICP. Heavy metal contents of 711 part samples of 505 products were measured using XRF. According to the results, the ratio of products that exceeded the Pb and Cd content standards specified under the Quality Management and Safety Control of Industrial Products Act were 2.4% and 2.6%. Many products certified for self-regulated safety exceeded the standards and thus it was considered that harmful chemical material centered safety management systems would be necessary. Detailed ICP analyses of some products were compared and the results showed deviations of 0.9~80.8% from XRF results. The reasons for this are deviations in the characteristics of measured cross sections and the homogeneity of samples resulting from sample preparation methods, etc. Therefore, it is considered that field quality control will be applicable if measuring methods are efficiently established based on product characteristics and calibration curve preparation methods are established through quality control.

Monostatic RCS Measurement for Dielectric Barrier Discharge Plasma (유전체 장벽 방전 플라즈마의 Monostatic 레이다 단면적 측정)

  • Lee, Hyunjae;Jung, Inkyun;Ha, Jungje;Shin, Woongjae;Yang, Jin Mo;Lee, Yongshik;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.246-252
    • /
    • 2016
  • In this paper, reduction of monostatic RCS by DBD plasma is measured. For the calibration of monostatic RCS, S-parameters of two metallic plate in different sizes are used and the result is within 0.4 dB error. Metallic plate is put behind DBD plasma generator for measuring reduction of monostatic RCS by DBD plasma. To prevent arc discharge between metallic plate and DBD plasma generator, measurement is progressed spacing the interval between metallic plate and DBD plasma generator. As a result, maximum reduction of monostatic RCS is about 3 dB at 7.4 GHz.

Fuel Concentration Measurements by Laser Rayleigh Scattering (레이저 Rayleigh 산란을 이용한 연료농도의 계측)

  • Kwon, Soon-Tae;Kim, Hyeong-Sig;Lee, Jae-Won;Park, Chan-Jun;Ohm, In-Young
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2008.04a
    • /
    • pp.199-205
    • /
    • 2008
  • In this study, a system to measure continuously the fuel concentration in a steady flow rig on the basis of Rayleigh scattering is presented. The system can be employed to measure both the temporal and the spatial distribution. Also, it is possible to calibrate the system for the measurement of accurate absolute concentration. Firstly, the system was tested at a calibration chamber for the determination of scattering cross section from propane, butane, acetylene, Freon-12 and Genetron 143a. After this, the system was adapted to a steady flow rig to measure the temporal and spatial fuel concentration. The rig is composed of cylinder head, intake manifold, injector, and transparent cylinder which can simulate internal combustion engine. To cope with the problem of Mie scattering interference, a software filter was developed, which is based on the rise time and the time constant of the photomultiplier-amplifier system. The results show that LRS can provide useful informations about concentration field and the software filter is very effective method to remove Mie interference.

  • PDF

A Development of Macroscopic Simulation Model for Interrupted Flow using Shockwave (충격파를 이용한 거시적 단속류 시뮬레이션 모형개발)

  • Lee, Ho-Sang;Jung, Young-Je;Kim, Young-Chan;Kim, Dae-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.1
    • /
    • pp.191-201
    • /
    • 2008
  • It has been employed TRANSYT-7F and NETSIM to evaluate the validity and effectiveness of improvement on TSM(Transportation Systems Management). But T7F is hard to describe platoon compression and dispersion in actually, and NETSIM takes a long time for network coding, calibration and have difficulty in setting up saturation flow. While Shockwave Model have advantage which can describe platoon compression and dispersion in actually and shorten hours, convenience of application. But Shockwave Model apply unrealistic traffic flow relation ship(U-K curve) and simplify platoon because of difficulty in calculating shockwave's position and cross. For solving limitation of existing shockwave models, It develop new model with 2-regime linear model, New platoon model, Extended shockwave, etc. For verifying the validity of the proposed model, it was compared with delay of T7F and NETSIM by offset variation. In conclusion, it is thought that proposed model have outstanding performance to simulate traffic phenomenon.

Respiratory air Flow Transducer Based on air Turbulence (와류 현상을 이용하는 호흡기류센서)

  • Kim, Kyung-Ah;Lee, In-Kwang;Park, Jun-Oh;Lee, Su-Ok;Shin, Eun-Young;Kim, Yoon-Kee;Kim, Kyung-Chun;Cha, Eun-Jong
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.5
    • /
    • pp.393-400
    • /
    • 2009
  • The present study developed a new technique with no physical object on the flow stream but enabling the air flow measurement and easily incorporated with the devices for cardiopulmonary resuscitation(CPR) procedure. A turbulence chamber was formed in the middle of the respiratory tube by locally enlarging the cross-sectional area where the flow related turbulence was generated inducing energy loss which was in turn converted into pressure difference. The turbulence chamber was simply an empty enlarged air space, thus no physical object existed on the flow stream, but still the flow rate could be evaluated. Computer simulation demonstrated stable turbulence formation big enough to measure. Experiment was followed on the proto-type transducer, the results of which were within ${\pm}5%$ error compared to the simulation data. Both inspiratory and expiratory flows were obtained with symmetric measurement characteristics. Quadratic curve fitting provided excellent calibration formula with a correlation coefficient>0.999(P<0.0001) and the mean relative error<1%. The present results can be usefully applied to accurately monitor the air flow rate during CPR.

A Melon Fruit Grading Machine Using a Miniature VIS/NIR Spectrometer: 1. Calibration Models for the Prediction of Soluble Solids Content and Firmness

  • Suh, Sang-Ryong;Lee, Kyeong-Hwan;Yu, Seung-Hwa;Shin, Hwa-Sun;Choi, Young-Soo;Yoo, Soo-Nam
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.166-176
    • /
    • 2012
  • Purpose: This study was conducted to investigate the potential of interactance mode of NIR spectroscopy technology for the estimation of soluble solids content (SSC) and firmness of muskmelons. Methods: Melon samples were taken from local greenhouses in three different harvesting seasons (experiments 1, 2, and 3). The fruit attributes were measured at the 6 points on an equator of each sample where the spectral data were collected. The prediction models were developed using the original spectral data and the spectral data sets preprocessed by 20 methods. The performance of the models was compared. Results: In the prediction of SSC, the highest coefficient of determination ($R_{cv}{^2}$) values of the cross-validation was 0.755 (standard error of prediction, SEP=$0.89^{\circ}Brix$) with the preprocessing of normalization with range in experiment 1. The highest coefficient of determination in the robustness tests, $R_{rt}{^2}$=0.650 (SEP=$1.03^{\circ}Brix$), was found when the best model of experiment 3 was evaluated with the data set of experiment 2. The best $R_{cv}{^2}$ for the prediction of firmness was 0.715 (SEP=3.63 N) when no preprocessing was applied in experiment 1. The highest $R_{rt}{^2}$ was 0.404 (SEP=5.30 N) when the best model of experiment 3 was applied to the data set of experiment 1. Conclusions: From the test results, it can be concluded that the interactance mode of VIS/NIR spectroscopy technology has a great potential to measure SSC and firmness of thick-skinned muskmelons.

Determination of Sasang Constitution from Artery Pulse Waves (요골 맥파를 이용한 사상체질 판별)

  • Cho, Jae Kyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.359-365
    • /
    • 2020
  • Sasang Constitution data that were classified by the QSCCII (Questionnaire for the Sasang Constitution Classification II) and artery pulse waves of Chon, Guan, and Chuck data measured using an electronic manometer, were obtained from 732 subjects who visited an oriental hospital. The pulse width, peak height, and number of peaks were extracted from the pulse waves as feature variables. Validity and reliability analyses were performed to obtain the feature variables. The feature variables with high validity and reliability were selected as the discriminant variables. The pulse wave data were divided into training and predicting samples by applying a fivefold cross-validation technique. Discriminant analysis was performed for the training sample, and discriminant functions were obtained. The discriminant functions were applied to the predicting sample and the Sasang Constitution was predicted. The accuracy of prediction was estimated by comparing the predicted Sasang Constitution and that obtained by QSCCII. The accuracy of the predicted Sasang Constitution before (after) age and sex calibration was 73.6 % (70.4 %), 68.4 % (84.2 %), and 74.2 % (67.7 %) for Taeumin, Soumin, and Soyangin, respectively, and 72.5 % (73.8 %) in total.

Simultaneous velocity and temperature measurement of thermo-fluid flows by using particle imaging technique (화상처리기법을 이용한 온도장 및 속도장 동시 측정기법 개발)

  • Lee, Sang-Joon;Baek, Seung-Jo;Yoon, Jong-Hwan;Doh, Deog-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3334-3343
    • /
    • 1996
  • A quantitative flow visualization technique was developed to measure velocity and temperature fields simultaneously in a two-dimensional cross section of thermo-fluid flows. Thermochromic liquid crystal(TLC) particles are used as temperature sensor and velocity tracers. Illuminating a thermo-fluid flow with a thin sheet of white light, the reflected colors from the TLC particles in the flow were captured simultaneously by two CCD cameras; a 3-chip CCD color camera for temperature field measurement and a black and white CCD camera for velocity field measurement. Variations of temperature field were measured by using a HSI true color image processing system and TLC solution. The relationship between the hue values of TLC color image and real temperature was obtained and this calibration curve was used to measure the true temperature under the same camera and illumination condition. The velocity field was obtained by using a 2-frame PTV technique using the concept of match-probability to track true velocity vectors from two consecutive image frames. These two techniques were applied at the same time to the unsteady thermal-fluid flow in a Hele-Shaw cell to measure the temperature and velocity field simultaneously and some results are discussed.

Respiratory air flow measuring technique without sensing element on the flow stream (호흡경로 상에 감지소자가 없는 새로운 호흡기류 계측기술)

  • Lee, In-Kwang;Park, Jun-Oh;Lee, Su-Ok;Shin, Eun-Young;Kim, Kyung-Chun;Kim, Kyung-Ah;Cha, Eun-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.294-300
    • /
    • 2009
  • Cardiopulmonary resuscitation(CPR) is performed by artificial ventilation and thoracic compression for the patient under emergent situation to maintain at least the minimum level of respiration and blood circulation for life survival. Quality of the pre-hospital CPR not only significantly affects the patient's survival rate but also minimizes side effects caused by CPR. Good quality CPR requires monitoring respiration, however, traditional respiratory air flow transducers cannot be used because the transducer elements are located on the flow axis. The present study developed a new technique with no physical object on the flow stream but enabling the air flow measurement and easily incorporated with the CPR devices. A turbulence chamber was formed in the middle of the respiratory tube by locally enlarging the cross-sectional area where the flow related turbulence was generated inducing energy loss which was in turn converted into pressure difference. The turbulence chamber was simply an empty enlarged air space, thus no physical object was placed on the flow stream, but still the flow rate could be evaluated. Both inspiratory and expiratory flows were obtained with symmetric measurement characteristics. Quadratic curve fitting provided excellent calibration formula with a correlation coefficient>0.999 (P<0.0001) and the mean relative error<1 %. The present results can be usefully applied to accurately monitor the air flow rate during CPR.