• Title/Summary/Keyword: Cross Bearing

Search Result 252, Processing Time 0.025 seconds

Structural performance of timber frame joints - Full scale tests and numerical validation

  • Aejaz, S.A.;Dar, A.R.;Bhat, J.A.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.457-470
    • /
    • 2020
  • The force resisting ability of a connection has direct implications on the overall response of a timber framed structure to various actions, thereby governing the integrity and safety of such constructions. The behavior of timber framed structures has been studied by many researchers by testing full-scale-connections in timber frames so as to establish consistent design provisions on the same. However, much emphasis in this approach has been unidirectional, that has focused on a particular connection configuration, with no research output stressing on the refinement of the existing connection details in order to optimize their performance. In this regard, addition of adhesive to dowelled timber connections is an economically effective technique that has a potential to improve their performance. Therefore, a comparative study to evaluate the performance of various full-scale timber frame Nailed connections (Bridled Tenon, Cross Halved, Dovetail Halved and Mortise Tenon) supplemented by adhesive with respect to Nailed-Only counterparts under tensile loading has been investigated in this paper. The load-deformation values measured have been used to calculate stiffness, load capacity and ductility in both the connection forms (with and without adhesion) which in turn have been compared to other configurations along with the observed failure modes. The observed load capacity of the tested models has also been compared to the design strengths predicted by National Design Specifications (NDS-2018) for timber construction. Additionally, the experimental behavior was validated by developing non-linear finite element models in ABAQUS. All the results showed incorporation of adhesive to be an efficient and an economical technique in significantly enhancing the performance of various timber nailed connections under tensile action. Thus, this research is novel in a sense that it not only explores the tensile behavior of different nailed joint configurations common in timber construction but also stresses on improvising the same in a logical manner hence making it distinctive in its approach.

Evaluating the Load Carrying Capacity of Aged Bridges in Consideration of the Functional Deterioration of Point Parts (지점부의 기능저하를 고려한 노후교량의 내하력평가)

  • Yang, Seung-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.15-21
    • /
    • 2010
  • Structural analysis used to evaluate the load carrying capacity of a bridge should implement behavioral characteristics similar to the actual behaviors of the structure through loading tests, but it is not feasible in many cases due to the behavioral characteristics of points, inadequate modeling method in structural analysis, errors in loading tests, changes in strength and rigidity resulting from cross-sectional damage, etc. This problem can be more serious if bridge bearings have been damaged or were not installed and, consequently, the bearings do not function properly. This study produced results similar to actual behaviors using a structural analysis model built with support moment derived from the difference $\Delta{\delta}$ between measured deflection obtained by confining the cantilever segment of a solid beam and calculated deflection under a unrestrained condition. When the load carrying capacity of a bridge in operation was evaluated in consideration of the confinement condition of supports, the result was 15~19% lower than load carrying capacity calculated by the existing method.

Effects of the Freeze-thaw Process on the Strength Characteristics of Soils (IV) -Insulation Performance beneath the Freezed Tested Banking by Inclusion of Insulation Material- (동결-융해작용이 흙의 강도특성에 미치는 영향 (IV) - 단열재를 삽입한 동결성토의 단열거동 -)

  • 유능환;박승범;유영선
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.39-46
    • /
    • 1990
  • This paper was analized the thermal conductivity of polystylene (TENSAR- GEOGRID) embeding into the subbase through frost penetration depth, frost heave, change of bearing capacity, and soil moisture movement due to freezing, thawing and icing actions, and their results were as follows : 1.The change of temperature into the sub-base was much increased by the Tensar-Geogrid insertion, and the frost penetration and frost heave were decreased as the thinner of the insulation thickness but the thawing velocity of melting period was appeared to be faster in case of non-insulated. 2.The frost heave had a close relationship with the thickness of insulations which was reasonably included anti-frost effects. 3.The moisture content during the freezing period of upper layer of the insulation insertion was increased by 15 per cent but it was returned to initial state of the thawing period, and at the down layer temporarily increased by 10 per cent and returned to the original state at once. 4.The insulation was acted as a function of distribution of surcharge, and the settlement of the sub-base was about 1.5 mm under 15 tonnage of load and which was included within the allowable limits. 5.The sliding resistance due to the icing which was induced by the insulation insertion into the sub-base was appeared as more 40 per cent than noninsulation area, so that the insulations should be restricted on the place such as mountains, curved and cross area which were required the braking power under the traffics.

  • PDF

Elastic-plastic formulation for concrete encased sections interaction diagram tracing

  • Fenollosa, Ernesto;Gil, Enrique;Cabrera, Ivan;Vercher, Jose
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.861-876
    • /
    • 2015
  • Composite sections design consists on checking that the point defined by axial load and bending moment keeps included within the surface enclosed by the section interaction curve. Eurocode 4 suggests a method for tracing this diagram based on the plastic stress distribution method. However curves obtained according to this criterion overvalue concrete encased sections bearing capacity, especially when axial force comes with high bending moment values, so a correction factor is required. This article proposes a method for tracing this diagram based on the strain compatibility method. When stresses on the section are integrated by considering the Navier hypothesis, the use of the materials nonlinear constitutive equations provides curves much more adjusted to reality. This process requires the use of rather complex software which might reveal as too complex for practitioners. Preserving the same criteria of an elastic-plastic stress distribution, this article presents alternative expressions to obtain the failure internal forces in five significant points of the interaction diagram having considered five different positions of the neutral axis. These expressions are simply enough for their practical application. Concordance of curves traced strictly relying on these five points with those obtained by computer assisted stress integration considering the strain compatibility method and even with Eurocode 4 weighted curves will be presented for three different cross-sections and two different concrete strengths, revealing very good results.

Comparison of WABA and Gd Burnable Absorbers Nuclear Characteristics and Optimal Allocation of Gd Rods in Fuel Assembly (WABA및 가도리니움 독봉 집합체에 대한 핵특성 비교 및 집합체내 가도리니아봉 위치 최적 선정)

  • Jung, Byung-Ryul;Yi, Yu-Han;Lee, Un-Chul;Park, Chan-Oh
    • Nuclear Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.352-362
    • /
    • 1991
  • Recent popular trends in pressurized water reactor(PWR) fuel management are to extend the cycle length and to employ the low-leakage core designs for the optimal utilization of the uranium resources. In control strategy incorporated with the fuel management, turnable absorbers are required to control the power peaking and to ensure a negative moderator temperature coefficient during reactor operation. In this study, the nuclear characteristics and the optimal allocation of gadolinium-poisoned rods within the fuel assembly are considered using KWU SAV 79 A Code Package. First, analyses are carried out to compare the nuclear characteristics of the fuel assemblies contain-ing WABA(Wet Annular Burnable Absorber) and Gadolinium burnable absorbers respectively. The analyses show that the gadolinium-bearing fuel assembly has peculiar depletion characteristics ensuing from the very large thermal neutron absorption cross section. Peculiar characteristics of gadolinium provide basis for the optimal allocation of Gd rods in fuel assembly. Second, the methodology of an optimal allocation of gadolinium-poisoned rods within the fuel assembly is developed and applied to some nuclear designs.

  • PDF

Seismic Performance of RC Column-Steel Beam Connections for Large Columns (대형기둥 적용을 위한 철근콘크리트기둥-강재보 접합부의 내진성능)

  • Park, Hong Gun;Lee, Ho Jun;Kim, Chang Soo;Hwang, Hyeon Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.231-242
    • /
    • 2016
  • Earthquake resistance of RC column-steel beam (RCS) joints with simplified details were studied. Simplified details are necessary for large columns to improve the productivity and constructability. To strengthen the beam-column joint, the effects of transverse beams, studs, and U-cross ties were used. Four 2/3 scale interior RCS connections were tested under cyclic lateral loading. The specimens generally exhibited good deformation capacity exceeding 4.0% story drift ratio after yielding of both beam and beam-column joint. Ultimately, the specimens failed by shear mechanism of the joint panel. The test strengths were compared with the predictions of existing design methods.

Experimental study on the seismic performance of concrete filled steel tubular laced columns

  • Huang, Zhi;Jiang, Li-Zhong;Chen, Y. Frank;Luo, Yao;Zhou, Wang-Bao
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.719-731
    • /
    • 2018
  • Concrete filled steel tubular (CFST) laced columns have been widely used in high rise buildings in China. Compared to solid-web columns, this type of columns has a larger cross-section with less weight. In this paper, four concrete filled steel tubular laced columns consisting of 4 main steel-concrete tubes were tested under cyclic loading. Hysteresis and failure mechanisms were studied based on the results from the lateral cyclic loading tests. The influence of each design parameter on restoring forces was investigated, including axial compression ratio, slenderness ratio, and the size of lacing tubes. The test results show that all specimens fail in compression-bending-shear and/or compression-bending mode. Overall, the hysteresis curves appear in a full bow shape, indicating that the laced columns have a good seismic performance. The bearing capacity of the columns decreases with the increasing slenderness ratio, while increases with an increasing axial compression ratio. For the columns with a smaller axial compression ratio (< 0.3), their ductility is increased. Furthermore, with the increasing slenderness ratio, the yield displacement increases, the bending failure characteristic is more obvious, and the hysteretic loops become stouter. The results obtained from the numerical analyses were compared with the experimental results. It was found that the numerical analysis results agree well with the experimental results.

Development of a tool to automate finite element analysis of a spindle system of machine tools (공작기계 주축 시스템의 유한요소해석 자동화를 위한 툴 개발)

  • Choi, Jin-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2350-2355
    • /
    • 2015
  • A tool was developed in this research for automation of one-dimensional finite element analysis (1D FEA) for design of a machine tool spindle system composed mainly of a shaft and bearings. As it is based on object-oriented programing, it uses the objects of a CAD system. It requires minimum data to be input to define the spindle system such as shaft cross-sections and bearing stiffness. Then, it automatically generates the geometric model based on the data and then, converts it into the FE model of 1D beams and springs. The graphic user interfaces developed allow a user to interact with the tool. This tool can be applied to identification of a near optimal design of the spindle system in minimum time and efforts by automating the FEA process with numerous design changes.

Case History for Safe Diagnosis of Embankment Dike using Composite Analysis of Various Geophysical surveys (물리탐사 결과 복합해석을 통한 방조제 제체 정밀안전진단 사례)

  • Song, Sung-Ho;Seong, Baek-Uk;Kim, Young-Gyu;Kang, Mi-Kyung;Lee, Gyu-Sang;Kim, Yang-Bin
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.107-112
    • /
    • 2007
  • To establish the reinforce region and technique through the embankment dike after identifying the region of seawater inflow, we carried out small-loop electromagnetic (EM) survey, electrical resistivity survey and refraction seismic method. We also analyzed the distribution of electrical conductivity in reservoir with depth every two month and monitored water level variations with tidal variation in four observation wells located at seaside and reservoir side in order to analyze the relationship with survey results. From both the cross-correlation between tidal and water level variation at four wells and the distribution of electrical conductivity in reservoir with depth, the major portion of seawater inflow are identified through the embankment dike. From electromagnetic and electrical resistivity survey results, it was found that the seawater inflow were happened through several small regions at seaside and became wider near reservoir side. The 2-D inversion sections of refraction seismic method showed that the pebble-bearing sand layer is spread over the whole region with two to four width. From the this study, small-loop EM, electrical resistivity and refraction seismic surveys accompany with the distribution of electrical conductivity in reservoir with depth and the monitoring results for water level variations are revealed to be effective to identify seawater inflow pathway through embankment dike and to establish the reinforce region and technique through the embankment dike.

  • PDF

Brassiere Pattern Development Based on 3D Measurements of Upper Body - Focused on Women in Their 30's - (3차원 인체 계측 방법에 의한 상반신 체형을 고려한 브래지어 패턴 설계 - 30대를 대상으로 -)

  • Cho, Shin-Hyun;Kim, Mi-Sook
    • The Research Journal of the Costume Culture
    • /
    • v.16 no.3
    • /
    • pp.488-501
    • /
    • 2008
  • The purpose of this study presents bra pattern using the 3D measurements of the upper body subject to women in their 30's. Brassieres available in the market are mostly designed for straight body shape and many women seem to have experienced bearing discomfort in a great extent as they grow older. Brassieres should be designed to cover diverse body types and the accurate measurement of body type and breast shape is needed to accomplish that. As for the study method, 3D human body types were analyzed with RapidForm 2006, and the upper-body types and breast shapes were statistically classified through technical statistics analysis, cluster analysis, t-test, variance analysis, and cross analysis. The wearing tests went through the comparison of the brassieres of three makers in the market and the experiment brassieres(first and second) and then the evaluations were made by the subjects, the outer appearance assessment by experts, and 3D measurements. The results of this study showed that the evaluation of experiment brassieres was excellent in every item, and the significant difference was found out particularly in the items of pressure, rear center, front center, breast underneath, adequate level by wing, and adequate level by armhole. According to the results of 3D evaluation, experiment brassieres had a highest point in fitness with no physical pressure at the wing part and no overall deviation at the cup part.

  • PDF