• Title/Summary/Keyword: Crop productivity

Search Result 809, Processing Time 0.037 seconds

Studies on Wet Paddy Field Underdrainage Improvement in the Gum-Ho Area (I) (금호지구 저습답의 암거배수효과에 관한 연구(I))

  • 김조웅;김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.4
    • /
    • pp.82-95
    • /
    • 1980
  • This paper complies the results of the studies so far made on the subsoil improvement of subsurface drainage systems for wet paddy fields (those were located in the Gum-Ho area in Kyung Buk province) which had poor permeability and a high water table. In general, a drainage problem is an excess of water on the ground surface which can effect the productivity and bearing capacity of the soil. With drain pipe systems, (According to their depths and spacing) it may be possible to correct that problem. The experimentation consisted of three test plots, two of which included drain pipe systems with varing depths and width spacing of the pipes. The third plot (C) was an ordinary plot being exempt of a drain pipe system. In detail, the depth of plot A was 80 cm, and the width spacings began at 2. Om and increased by 2. Om up to 10. 0m. The depth of plot B was 60cm and the width spacing was the same as plot A. These tests were performed to research specific details; such as crop yeild, bearing capacity of the soil, the amount of underdrainage, surface cracks, root distribution, the water table level, the consumptive water depth and the soil moisture content. The test period lasted three years, from 1977 thru 1979. The results obtained were as follows: 1. During the test period, the weather conditions for the area tested were in accordance with the annual average for that area. Furthermore the precipitation factor during the spring cultivation season, the intermediate drainage period and the harvest drainage period was of optimum conditions for controling surface cracks, because of less precipitation than evaporation. 2. The difference in the level of the ground water table in plots A and B was hardly noticable, but the difference in the test plots and the ord. plot was greatly noticable. The test plots (A, B) were 30 to 40cm lower than the ordinary plot. On the whole, the ground water table of the ord. plot always stayed at a level of 15-20cm beneath the surface of the soil, the ground water table of the test plot A showed The difference in the depth of the pipe lower than the test plot B, while the test plots showed a remarkable descending effect. 3. The soil temperature in plot A was slightly core than in plot B with a difference of 0. 47$^{\circ}$C, but plot A was 1. 6$^{\circ}$C higher than the ord. plot during the flooding period, but after drainage the temperature difference climed to 2. 0$^{\circ}$C. 4. During the 3rd test year, the values of the cracks were recorded with the values of 59cm in plot A, 42cm in plot B and 15cm in the ordinary plot. Plots A and B had increased 2.5 times the value of the first year while the ordinary plot had remained the same. 5. The root weight of the rice was measured at a value of 77.2 gr. for plot A, 73.5 gr. for plot B and 65.3 gr. for the ord. plot. Therefore, the root growths in plots A and B were much more energetic than in the ord. plot. 6. The consumptive water depth measured during the 3rd year resulted in the values of 26. 0mm per day for plot A, and 24.9 mm per day for plot B, respectively. Therefore, both plot A and plot B maintained the optimum consumptive water depths, but the ordinary plot only obtained the value of 12.3 mm per day, which clearly showed less than the optimum consumptive water depth which is 20 to 30 mm/day. 7. The soil moisture content is in direct relationship to the ground water level. During drainage, test plot A decreased in its ground water level much more rapidly than the other two plots. Therefore, plot A had a much less soil moisture content. But this decreased water level could be directly effected by the weather conditions. 8. The relationship between the bearing capacity and the soil moisture content were directly inversely proportional. It can be assumed that the occurence of soil creaks is limited by the soil moisture content. Therefore, the greater the progress of the surface creaks resulted in a greater bearing capacity. So, tast plot A with a greater amount of surface cracks than the other test plots resulted in a greater bearing capacity. But, the bearing capacity at the harvest season could be effected by the drainage during the intermediate drainage period and by the weather conditions. 9. Comparing the production of the test plots to the ord. plot; there was an increased value of 840kg for plot A, 755kg for plot B and 695kg for the ord. plot in the rough rice. Therefore, plot A had an increase of 20% over the ordinary plot. The possibility of producing double crops was investigated. The effects on barley production in the test plots showed a value of 367kg per 10 acres, which substantiated the possibility of double crops because that value showed an increased value over the average yearly yield for those uplands. 10. So as a result, it can be recommended that by including a drain pipe system with the optimum conditions of an (80cm centimeter) depth and a (l0m) spacing will have a definite positive effect on the over all production capacity and quality of wetpaddy fields.

  • PDF

Effects of NaCl Concentrations on Production and Yields of Fruiting Body of Oyster Mushrooms, Pleurotus spp. (NaCl의 농도가 느타리버섯 자실체 발생 및 수량에 미치는 영향)

  • Jhune, Chang-Sung;Sul, Hwa-Jin;Kong, Won-Sik;Yoo, Young-Bok;Cheong, Jong-Chun;Chun, Se-Chul
    • The Korean Journal of Mycology
    • /
    • v.34 no.1
    • /
    • pp.39-53
    • /
    • 2006
  • This studies investigated the effect of concentrations of sodium chloride (NaCl) on occurrence and growth of fruitbody in oyster mushrooms, Pleurotus spp. Our experiments divided into two parts. When the water contents in substrate were added with sodium chloride solution in cotton waste box cultivation as a first experiment, the growth of mushroom was damaged as the concentration was increased, even though there was a little difference according to the strains. The yield in 1.0% NaCl solution was decreased to 72% compared to non-treated plot while that in 3.0% solution was only 2% of the non-treated plot. Morphological characteristics of mushrooms cultivated in substrate with the different concentration of the solution showed different results. For example, the size and thickness of pilei were not influenced by NaCl concentration, but the length of stipes and individual weight were much influenced. In plastic box cultivation filled with cotton waste, watering treatment with the different concentrations of sodium chloride solution, the second experiment, did not show any difference according to the concentration until 1.0% solution but there was a little difference according to the strains. The productivity of fruitbody started to decrease at 2.0% of the solution and the yield and quality of mushroom in 3.0% solution treatment were generally low. After the second flush, days for mushroom sprouting were generally prolonged in proportion to the solution concentration. Taken altogether, the second experiment did not show a clear effect as the case of the first experiment.

The Effect of Application Levels of Slurry Composting and Bio-filtration Liquid Fertilizer on Soil Chemical Properties and Growth of Radish and Corn (총각무와 옥수수 재배시 SCB액비 시용수준이 토양화학성과 생육에 미치는 영향)

  • Kang, Seong-Soo;Kim, Min-Kyeong;Kwon, Soon-Ik;Kim, Myong-Suk;Yoon, Sung-Won;Ha, Sang-Gun;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1306-1313
    • /
    • 2011
  • A liquid fertilizer treated with slurry composting and biofiltration (SCB) process has been applied increasingly on agricultural field but the effects on the soil properties and crop production has not been throughly evaluated. This study was conducted to investigate the effect of the SCB application on soil chemical properties and the growth of radish and corn. SCB liquid fertilizer as a basal fertilization was treated with five levels based on $6kg\;10a^{-1}$ for radish and $10kg\;10a^{-1}$ for corn. The experimental design was the completely randomized block design with five levels and three replicates. Electrical conductivity (EC), $NO_3$-N, Exch. K and Exch. Na increased depending on the treatment levels of SCB. There were no changes in soil organic matter, Avail. $P_2O_5$, Exch. Ca and Exch. Mg. EC, $NO_3$-N and Exch. Na content decreased as precipitation increased. Especially, they decreased up to the initial condition before the treatment after the heavy rainy season in 2008. Although Exch. K decreased at the rainy season, they remained relatively higher content after the experiment on August, 2008. Fresh weight and the amount of N uptake of radish increased due to the levels of SCB, but corn did not present any significant increase. It is recommended that we need to decide the proper amount of SCB as well as the application method on the field to increase the productivity and decrease environmental stress. Additional experiments also need to clarify the effect of the trace element and heavy metal accumulations due to long term application of SCB.

Mycelial and cultural characteristics of Pleurotus ostreatus 'Baekseon', a novel white cultivar for bottle culture (병재배용백색느타리신품종 『백선』의 균사배양및생육특성)

  • Choi, Jong In;Lee, Yun Hae;Gwon, Hee Min;Jeon, Dae Hoon;Lee, Yong Seon;Lee, Young Sun
    • Journal of Mushroom
    • /
    • v.17 no.3
    • /
    • pp.113-118
    • /
    • 2019
  • Oyster mushrooms are an economically important crop, accounting for 35% of the total mushroom production in Korea. In this study, we developed a new cultivar of Pleurotus ostreatus, known as 'Baekseon,' which is characterized by a white pileus with a white stipe. It was bred by mating monokaryons isolated from white mutant oyster mushrooms that were naturally generated from 'Gonji-7ho' and 'Wonhyeong-1ho' at the Mushroom Research Institute, GARES, Korea in 2018. The optimum temperature for mycelial growth on potato dextrose agar medium was approximately $28-31^{\circ}C$, and the optimum temperatures for primordia formation and growth of fruit bodies on sawdust media were $22^{\circ}C$ and $20^{\circ}C$, respectively. The time required for the bottle-cultured mushrooms to complete spawn running, primordia formation, and growth of fruit bodies was 30 days, 4 days, and 4 days, respectively. The fruit bodies were bundle-shaped, the pilei were round type and white, and the stipes were white. The stipes were slender and longer than those of the control ('Miso'). In the productivity test, the yield per bottle was 185 g/1100 mL, which was 45% greater than that of the control ('Miso'). In the farm test, the yield per bottle for Farm A (Pyeongtaek) and Farm B (Yeoju) was 184 g/1100 mL and 178 g/850 mL, respectively. With regard to the physical properties of fruit bodies, the springiness, cohesiveness, gumminess, and brittleness of stipe tissue were 80%, 57%, 720 g, and 57 kg, respectively. These values were lower than those of the control ('Miso'). To test the shelf life, the fruit bodies were wrapped with antifogging film and stored at $4^{\circ}C$ for 28 days and then at room temperature for 4 days; such conditions were sufficient for maintaining edibility.

Breeding and characteristics of Uram, a New Variety of Pleurotus nebrodensis (백령느타리 신품종 '우람'의 육성 및 특성)

  • Ha, Tai-Moon;Jung, Gu-Hyun;Kim, Jeoung-Suk;Choi, Jong-In;Kim, Jeong-Han;Lee, Yong-Seon;Jeong, Yung-Kyeoung
    • Journal of Mushroom
    • /
    • v.19 no.2
    • /
    • pp.88-95
    • /
    • 2021
  • This study was carried out to breed new variety of Pleurotus nebrodensis. We have collected and tested characteristics of genetic resources from domestic and abroad since 2015. The varieties of P. nebrodensis from China are grown by farmers, but those have been unstable fruiting and are weak against bacterial diseases. To solve this problem, we bred the unique domestic variety 'Uram' of P. nebrodensis and the results of the characteristic test for the new 'Uram' are as follows. The proper temperature for the mycelial growth was 26~29℃ and fruit body growth temperature was 15~18℃. It was similar to the control variety KME65035 of P. nebrodensis in the pileus form of a flat and white color. The number of days required for initial fruting was 5 days for bottle cultivation and 6 days for bag cultivation which was 2-4 days shorter than that of the control variety. The pileus diameter was 32.6-37.0 mm which was smaller but the fruit body length was 130.4 mm, which was longer than those of the control variety. The effective number of fruit bodies was 1.8 in bottle cultivation and 2.9 in bag cultivation, which was more than those of the control variety. The yield rate was 93.3-100%, which was more stable than those of the control variety. In bottle cultivation and bag cultivation, the yield was 173.1 g/bottle (1100 cc) and 283.4 g/bag (1.2 kg), respectively, which was 25-44% higher than those of the control variety 138.0 g/bottle (1100 cc) and 197.4 g bag (1.2 kg). When incubating the parent and control varieties of 'Uram', the replacement line was clear and as a result of mycelial DNA RAPD-PCR reaction, the band pattern was different from that of the parent and control varieties, confirming the hybrid species.

Effects of Heating Initiative Temperature and CO2 Fertilizing Concentration on the Growth and Yield of Summer Squash in a Greenhouse (온실 난방 개시온도와 CO2 시비 농도가 애호박의 생육과 수량에 미치는 영향)

  • Goo, Hei Woong;Kim, Eun Ji;Na, Hae Yeong;Park, Kyoung Sub
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.468-475
    • /
    • 2022
  • This study was conducted to find out the efficiency of heating initiative temperature and carbon dioxide fertilization in summer squash (Cucurbita moschata D.). The heating start temperature experiment was performed at 9℃, 12℃, and 15℃ using an electric heater and operated when the temperature was lower than the target temperature. The CO2 fertilization concentration experiment was performed from 7 to 12 with the control, 500 µmol·mol-1, and 800 µmol·mol-1 using liquefied carbon dioxide. Investigation items were plant height, stem diameter, number of leaves, leaf area, fresh weight, dry weight, also economic analysis was conducted by surveying only fruits exceeding 100 g. Photosynthesis was measured for the upper leaf position to calculate the saturation point according to the control. The photo saturation point was 587 µmol·m-2·s-1, and the CO2 saturation point was 702 µmol·mol-1. Amax values by carbon dioxide were 13.4, 17.8, 17.2, 19.6, and 17.5 µmolCO2·m-2·s-1 in the order of 9℃, 12℃, 15℃, 500 µmol·mol-1, and 800 µmol·mol-1. In the temperature experiment, 9℃ in growth did not grow normally and no fruiting was performed. 12℃ and 15℃ were higher than 9℃, but there was no significant difference in growth and production. The CO2 fertilization experiment showed no significant difference between the treatment in growth, but the productivity of 800 µmol·mol-1 was the best. Comprehensively, the heating initiative temperature of 15℃ was good for crop growth and production, but there is no significant difference from 12℃, so it is good to set the heating start temperature to 12℃ economically, and maintaining of 800 µmol·mol-1 is effective in increasing production.

Assessment of CO2 Fertilization Captured in Thermoelectric Power Plant on Leafy Vegetables Grown in Greenhouse (화력발전소 포집 CO2를 이용한 시설 엽채류 시비효과 평가)

  • Jeong, Hyeon Woo;Hwang, Hee Sung;Park, Jeong;Yoon, Seong Ju;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.423-431
    • /
    • 2022
  • Due to increase of interest in 'carbon neutrality', attempts at agricultural use of CO2 are increasing. In this study, we used the dry-ice made by CO2 as by-product in thermoelectric power plant on CO2 fertilization for production of leafy vegetable in greenhouses. The dry-ice was supplied on three leafy vegetable farms (Allium tuberosum Rottl. ex Spreng, Aster scaber, and Oenanthe stolonifera DC.) located in Hadong, Gyeongsangnamdo. Two greenhouses were used in each leaf vegetable crops, one greenhouse used as the control (non-treatment), other greenhouse used as supplied CO2. For CO2 fertilization, a gas sublimated from dry ice was supplied to the greenhouse using a specially designed prototype supply machine. A. tuberosum greenhouse has no difference of CO2 concentration between the control, and CO2 fertilization and shown high CO2 concentration both greenhouses. However, the CO2 concentrations in A. scaber and O. stolonifera greenhouses were increased in CO2 fertilization treatment. The growth of A. scaber and O. stolonifera were increased in CO2 fertilization, and the yield also increased to 36% and 25% than the control, respectively. As a result of economic analysis, the A. scaber has increase of income rate, however A. tuberosum and O. stolonifera has decreased income rate. Thus, the use of the dry-ice made by CO2 as by-product in thermoelectric power plant has possibility to increase productivity of the leafy vegetable in greenhouse and have agricultural use value.

Effects of Applying Livestock Manure on Productivity and Feed Value of Corn and Sorghum$\times$Sorghum Hybrid (가축분뇨시용이 옥수수와 수수$\times$수수교잡종의 생산성 및 사료가치에 미치는 영향)

  • Jo, Ik-Hwan
    • Korean Journal of Organic Agriculture
    • /
    • v.16 no.1
    • /
    • pp.115-125
    • /
    • 2008
  • This study was conducted to determine adequate forage crop choice and optimal level of livestock manure, when different types and levels of the livestock manure were applied in corns or sorghum$\times$sorghum hybrids for the production of organic roughages by utilizing livestock manure. For the corn, yields of annual dry matter (DM) and total digestible nutrients (TDN) were highest in N+P+K-applied treatments, showing 17.3 and 11.7 ton/ha, respectively. Treatments applied 100% composted cattle manure (8.9 and 6.1 ton/ha) and 100% cattle slurry (9.4 and 7.5 ton/ ha) in contrast with chemical fertilizer-N had higher yields of DM and TDN than no fertilizer (4.8 and 2.7 ton/ha) and P+K-applied treatments (8.8 and 6.0 ton/ha). Particularly, treatments applied 150% composted cattle manure and 150% cattle slurry were markedly higher, which represented 11.4 and 7.6 ton/ha and 10.3 and 7.3 ton/ha, respectively. Crude protein (CP) contents for corns applied livestock manure ranged from 5.6 to 6.6%, which were significantly (p<0.05) higher than those of no fertilizer (3.9%) and P+K-applied treatments (5.5%). ADF (42.4%) and NDF (58.3%) contents for no fertilizer treatment were significantly (p<0.05) higher than those of other treatments. However, TDN contents were higher for livestock manure treatments than for no and/or chemical fertilizer treatments. In particular, TDN contents of treatments applied 150% composted cattle manure and 150% cattle slurry showed 72.3 and 70.8%, respectively and both treatments were significantly (p<0.05) higher than all of the other treatments. For the sorghum$\times$sorghum hybrid, yields of annual DM and TDN for 100% (12.4 and 7.4 ton/ha) and 150% (13.1 and 7.6 ton/ha) cattle slurry-applied treatments, and N+P+K-applied treatments (12.6 and 7.7 ton/ha) were significantly (p<0.05) higher than those of the others. In the others, 150% composted cattle manure (9.3 and 5.2 ton/ha) had higher annual DM and TDN yields than P+K-applied (8.4 and 4.8 ton/ha) and 100% composted cattle manure treatments (7.4 and 4.2 ton/ha), with no significant difference. Crude protein contents for sorghum$\times$sorghum hybrid applied P+K and cattle slurry were 8.8 and 8.6%, respectively. CP contents for both treatments were significantly higher than those of composted manure ($7.5{\sim}8.3%$) and no fertilizer (4.0%) treatments, but 100% livestock manure treatments had higher CP contents than 150%-applied treatments. ADF and NDF contents for N+P+K and cattle slurry-applied treatments were significantly (p<0.05) lower than the others. However, TDN contents were highest in N+P+K and cattle slurry-applied treatments, showing 61.2 and 58.3 to 59.4%, respectively. These results indicated that application of livestock manure instead of chemical fertilizer to the soil of forage crops might not only improve yields of DM and TDN, but also reduce environmental pollution by producing organic roughages through recycling of livestock manure.

  • PDF

Study on the Technological System of the Cooperative Cultivation of Paddy Rice in Korea (수도집단재배의 기술체계에 관한 연구)

  • Min-Shin Cho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.8 no.1
    • /
    • pp.129-177
    • /
    • 1970
  • For the purpose of establishing the systematized technical scheme of the cooperative rice cultivation which has most significant impact to improve rice productivity and the farm management, the author have studied the cultivation practices, and the variation of rice growth and yield between the cooperative rice cultivation and the individual rice cultivation at random selected 18 paddy fields. The author also have investigated through comparative method on the cultivation practices, management, organization and operation scheme of the two different rice cultivation methods at 460 paddy fields. The economic feasibility has been ana lysed and added in this report. The results obtained from this study are summarized as follows; 1. In the nursery, the average amount of fertilizer application, especially, phosphate and potassium, and the frequency of chemicals spray for the disease, insect and pest control at the cooperative rice cultivation are significantly higher than those of the individual rice cultivation. 2. The cultivation techniques of the cooperative rice farming after the transplanting can be characterized by a) the earlier transplanting of rice, b) the denser hills per unit area and the lesser number of seedlings per hill, c) the application of larger quantities of fertilizer including nitrogen, phosphate and potassium, d) more divided application of fertilizers, split doses of the nitrogen and potassium, e) the increased frequencies of the chemicals spray for the prevention of disease, insect and pest damages. 3. The rate of lodging in the cooperative rice cultivation was slightly higher than that of the individual rice cultivation, however, the losses of rice yield owing to the occurrence of rice stem borer and grass leaf roller in the cooperative rice cultivation were lower than that of the individual rice cultivation. 4. The culm length, panicle length, straw weight and grain-straw ratio are respectively higher at the cooperative rice cultivation, moreover, the higher variation of the above factors due to different localities of the paddy fields found at the individual rice cultivation. 5. The number of panicles, number of flowers per panicle and the weight of 1, 000 grains, those contributing components to the rice yield were significantly greater in the cooperative rice cultivation, however, not clear difference in the maturing rate was observed. The variation coefficient of the yield component in the cooperative cultivation showed lower than that or the individual rice cultivation. 6. The average yield of brown rice per 10 are in the cooperative rice cultivation obtained 459.0 kilograms while that of the individual rice cultivation brought 374.8 kilograms. The yield of brown rice in the cooperative rice cultivation increased 84.2 kilogram per 10 are over the individual rice cultivation. With lower variation coefficient of the brown rice yield in the cooperative rice cultivation, it can be said that uniformed higher yield could be obtained through the cooperative rice cultivation. 7. Highly significant positive correlations shown between the seeding date and the number of flowers per panicle, the chemical spray and the number of flowers per panicle, the transplanting date and the number of flowers per panicle, phosphate application and yield, potassium application and maturing rate, the split application of fertilizers and yield. Whilst the significant negative correlation was shown between the transplanting date and the maturing rate 8. The results of investigation from 480 paddy fields obtained through comparative method on the following items are identical in general with those obtained at 18 paddy fields: Application of fertilizers, chemical spray for the control of disease, insects and pests both in the nursery and the paddy field, transplanting date, transplanting density, split application of fertilizers and yield n the paddy fields. a) The number of rice varieties used in the cooperative rice cultivation were 13 varieties while the individual rice cultivation used 47 varieties. b) The cooperative rice cultivation has more successfully adopted improved cultivation techniques such as the practice of seed disinfection, adoption of recommended seeding amount, fall ploughing, application of red soil, introduction of power tillers, the rectangular-type transplanting, midsummer drainage and the periodical irrigation. 9. The following results were also obtained from the same investigation and they are: a) In the cooperative rice cultivation, the greater part of the important practices have been carried out through cooperative operation including seed disinfection, ploughing, application of red soil and compost, the control of disease, insects and pests, harvest, threshing and transportation of the products. b) The labor input to the nursery bed and water control in the cooperative rice cultivation was less than that of the individual rice cultivation while the higher rate of labor input was resulted in the red soil and compost application. 10. From the investigation on the organization and operation scheme of the cooperative rice cultivation, the following results were obtained: a) The size of cooperative rice cultivation farm was varied from. 3 ha to 7 ha and 5 ha farm. occupied 55.9 percent of the total farms. And a single cooperative farm was consisted of 10 to 20 plots of paddies. b) The educational back ground of the staff members involved in the cooperative rice cultivation was superior than that of the individual rice cultivation. c) All of the farmers who participated to the questionaires have responded that the cooperative rice cultivation could promise the increased rice yield mainly through the introduction of the improved method of fertilizer application and the effective control of diseases, insects and pests damages. And the majority of farmers were also in the opinion that preparation of the materials and labor input can be timely carried out and the labor requirement for the rice cultivation possibly be saved through the cooperative rice cultivation. d) The farmers who have expressed their wishes to continue and to make further development of the cooperative rice cultivation was 74.5 percent of total farmers participated to the questionaires. 11. From the analysis of economical feasibility on the two different methods of cultivation, the following results were obtained: a) The value of operation cost for the compost, chemical fertilizers, agricultural chemicals and labor input in the cooperative rice cultivation was respectively higher by 335 won, 199 won, 288 won and 303 won over the individual rice cultivation. However, the other production costs showed no distinct differences between the two cultivation methods. b) Although the total value of expenses for the fertilizers, agricultural chemicals, labor input and etc. in the cooperative rice cultivation were approximately doubled to the amount of the individual rice cultivation, the net income, substracted operation costs from the gross income, was obtained 24, 302 won in the cooperative rice cultivation and 20, 168 won was obtained from the individual rice cultivation. Thereby, it can be said that net income from the cooperative rice cultivation increased 4, 134 won over the individual rice cultivation. It was revealed in this study that the cooperative rice cultivation has not only contributed to increment of the farm income through higher yield but also showed as an effective means to introduce highly improved cultivation techniques to the farmers. It may also be concluded, therefore, the cooperative rice cultivation shall continuously renovate the rice production process of the farmers.

  • PDF