• Title/Summary/Keyword: Crop production

검색결과 2,857건 처리시간 0.037초

A Study on the Improvement Methods for Hybrid Sorghum Seeds Production

  • Ji-Young Kim;Sang-ik Han;Seok-bo Song;Byeong-won Lee;Ji-ho Chu;Young-kwang Ju;Chung Song Kim
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.205-205
    • /
    • 2022
  • Sorghum (Sorghum bicolor L.) is a major cereal grain crop of the world and It can be cultivated under high temperature and dry condition with high adaptability to the adverse environment. It is usually eaten with rice in korea and most of domestic sorghum cultivars have been developed by pure line selection and cross breeding. In prior studies, Hybrid cultivar (F1 seed) was known to improve 30-40% in yield and resist to disease and pest than pure line varieties due to hybrid vigor. Therefore, study on the hybrid sorghum is continuously necessary. In korea, hybrid sorghum cultivar have been developed, so we need to find methods seed production technology for supply and commercialization of hybrid seed cultivar. Female inbred line(A-line) and male inbred line(R-line) are needed for hybrid seed production. This study was carried out to investigate growth characteristics and yield of hybrid sorghum according to the seedling period and planting rate between female inbred line(YSA1) and male inbred line (Sodamchal, Miryang 19). When the flowering period of two inbred groups in the process of hybrid seed production is coincides, hybrid seed production is increase. The female inbred line and male inbred lines were cultivated at Daegu in 2021. Two inbred lines were sown at intervals of 3 days and 7days and were evaluated flowering period. As a result, the flowering period of the female inbred line and male inbred lines were matched at the 7days interval. To find out optimal planting rate, two inbred lines were cultivated under different plating rate (4:2, 5:2, 6:2). Yield of YSA1/Sodamchal(F1) was the highest 130(kg/10a) in the 4:2 ratio and yield of YSA1/Miryang 19 was the highest quantity of 139(kg/10a) in the 6:2 ratio. The results of this study could be helpful for hybrid Sorghum seeds production.

  • PDF

Nutritional Evaluation of Some Tropical Crop Residues: In Vitro Organic Matter, Neutral Detergent Fibre, True Dry Matter Digestibility and Metabolizable Energy Using the Hohenheim Gas Test

  • Aregheore, E.M.;Ikhatua, U.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권5호
    • /
    • pp.747-751
    • /
    • 1999
  • The Hohenheim in vitro gas test was used to assess the nutritional value of some crop residues of known in vivo digestibility. The crop residues are groundnut shells (GNS) corn cobs (CC); cassava peels (CaP); unripe and ripe plantain peels (UPP, RPP) and citrus pulp/peels (CPP). Compared to other crop residues, crude protein (CP) content of CC was low. Except for CaP and CPP that had low neutral detergent fibre (NDF) and acid detergent fibre (ADF), other residues contained a high amount of cell wall constituents. Net gas production was significantly different among the crop residues (p<0.05). Gas production was highest in CPP followed by CaP. CC, UPP and RPP have the same volume of net gas production, while the least net gas production was in GNS. True dry matter (TDM) digestibility was significantly different (p<0.05) among the residues. GNS was the least in TDM digestibility. CaP, UPP and RPP had similar TDM digestibility values, while the highest TDM digestibility was obtained in CPP. OM digestibility was different among the residues (p<0.05). CaP and CPP had the same ME value while CC, UPP and RPP had close ME values and GNS the least in ME (p<0.05). The potential extent (b) and rate (c) of gas production were statistical different among the residues (p<0.05). The Hohenheim gas test gave high in vitro organic matter (OM) digestibility for CC, CaP, UPP and RPP and CPP. Fermentable carbohydrates and probably available nitrogen in the crop residues influenced net gas production. The results showed that crop residues besides, providing bulk are also a source of energy and fermentable products which could be used in ruminant livestock production in the tropics.

Reverse transcription Loop-mediated isothermal amplification을 이용한 Soybean mosaic virus의 진단 (Detection of Soybean mosaic virus by Reverse Transcription Loop-mediated Isothermal Amplification)

  • 이영훈;배대현;김봉섭;윤영남;배순도;김현주;;박인희;이수헌;강항원
    • 식물병연구
    • /
    • 제21권4호
    • /
    • pp.315-320
    • /
    • 2015
  • Soybean mosaic virus(SMV)는 potyvirus 속에 속하며, 모자이크, 괴사, 기형 등의 병징을 야기하고 국내에서는 11개 계통(G1 to G7, G5H, G6H, G7H, G7a)이 보고되어있다. Reverse transcription loop-mediated isothermal amplification(RT-LAMP) 방법은 등온에서 유전자 증폭이 가능하게 하며, 이 방법은 PCR 과정이나 전기영동 없이도 바이러스에 감염된 식물을 검출할 수 있는 이점이 있다. RT-LAMP의 최적반응 조건은 $58^{\circ}C$, 60분으로 확인되었다. 특이성 검정을 위해 콩에서 발생하는 여러 바이러스들과 보유중인 SMV의 9 계통에서 그 특이성을 확인하였다. 그 결과 SMV에 대한 RT-LAMP primer들의 종 특이성이 확인되었으며, SMV의 계통들에 대해서도 적용이 가능한 것으로 확인되었다. 항온수조와 heating block과 같은 간편한 등온 장치에서 재현성을 확인하기 위해 Thermocycler 기기와 비교하여 증폭 여부를 확인한 결과 반응의 차이는 나타나지 않았다. RTLAMP 반응 이후, 반응물을 전기영동과 SYBR Green I을 이용하여 자연광과 UV광에서 증폭 여부를 확인하였다. 그 결과 전기 영동, 자연광, portable UV light와 UV transilluminator에서 모두 반응이 확인되었다.

Effects of Low Temperature during Ripening on Amylose Content and Enzyme Activities Associated with Starch Biosynthesis in Rice Endosperm

  • Baek, Jung-sun;Jeong, Han-Yong;An, Sung-Hyun;Jeong, Jae-Heok;Lee, Hyen-Seok;Yoon, Jong-Tak;Choi, Kyung-Jin;Hwang, Woon-Ha
    • 한국작물학회지
    • /
    • 제63권2호
    • /
    • pp.86-97
    • /
    • 2018
  • The objective of this study was to determine the effects of low temperature on starch accumulation in rice grains. We used four major Japonica-type Korean rice cultivars as materials: Jinbu (JB), Junamjosaeng (JJ), Geumyoung (GY), and Hwawang (HW). Rice plants were moved into two phytotrons the day after heading. Temperatures in the two phytotrons were maintained at $19/29^{\circ}C$ (night/day) as the control, and $13/23^{\circ}C$ as the low temperature condition, both under natural daylight with a relative humidity of 65%. The ripening rates of JB and JJ showed no significant difference between the low temperature and control conditions at 45 days after heading (DAH). In contrast, the ripening rates of GY and HW were 86% and 57% lower than those of JB and JJ under the low temperature condition at 45 DAH, respectively. However, the ripening rates of these four varieties at 61 DAH (when accumulated temperature reached $1,100^{\circ}C$) under the low temperature condition were similar to those at 45 DAH under the control condition (JB, 94%; JJ, 97%; GY, 97%; HW, 88%). The total starch contents showed no significant difference between the control and low temperature conditions. However, the amylose contents in the cultivars were higher under the low temperature than under the control condition. The enzyme activities of starch biosynthesis were about 5-10 days slower in cultivars under the low temperature than under the control. The grain-filling rate showed significant correlations with the enzyme activities of SuSase ($r^2=0.70^{***}$), AGPase ($r^2=0.63^{***}$), UDPase ($r^2=0.36^{***}$), StSase ($r^2=0.51^{***}$), and SBE ($r^2=0.59^{***}$). In conclusion, although StSase activity was increased at $13/23^{\circ}C$ up to 20 DAH, there might not be enough time for SBE to synthesize amylopectin, thus affecting the amylose content of HW, which had the slowest grain filling rate. Notably, the decreased activity of SuSase and SBE and late increase in AGPase activity under the low temperature during the ripening stage are considered to be disadvantageous, as they delay ripening and increase the amylose content.

The Effects of Water Level and Temperature on Seed Germination and Early Seedling Development of Rice (Oryza sativa I.)

  • Thang La;Seo-Yeong Yang;Hyeon-Seok Lee;Chung-Gun Lee;Myeong-Gue Choi;Woon-Ha Hwang
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.132-132
    • /
    • 2022
  • The application of direct seeding cultivation reduces time, labor, and cost. However, this application often has poor seedling establishment and leads to lower yield as compared to transplanting system. The tolerance to anaerobic and low temperature germination is important to improve seedling establishment and the wide-spread application of direct seeding method. This study was carried out to evaluate the responses of three japonica cultivars to different temperatures (15℃, 18℃, 21℃, 24℃, and 27℃) and different flooding levels (1 cm, 4 cm, 7 cm, 10 cm) during germination and seedling development. The mean survival percentage significantly increased (P<0.05) when the flooding level decreased and when temperature increased. There were significant effects of the interaction between temperature and water depth on survival percentage and seedling height. When temperature decreased from 27℃ to 15℃, the germination duration significantly increased from 6.4 days to 16.3 days while the germination speed, survival percentage, and seedling height decreased from 5.3 seeds day-1, 61.9% and 190.6 cm to 2.2 seeds day-1, 33.2%, and 47 cm, respectively. The increase in temperature under submergence condition was associated with the increased expression of Amy3D and ALDH2a but the decreased expression of ADH1 and PDC1. The results of this research would be used for further studies and breeding programs to improve rice seedling establishment and the application of direct seeding cultivation.

  • PDF

Temperature Effect on the Growth Parameters of Rice during Vegetative Period

  • Yin Myat Myat Min;Seo-Young Yang;Hyeon-Seok Lee;Myeong-Gu Choi;Chung-Gun Lee;Woon-Ha Hwang
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.133-133
    • /
    • 2022
  • Temperature is a crucial environmental factor for rice cultivation due to the climate change and can influence the rice growth and development. Therefore, the effect of temperature on plant growth characters was examined during the vegetative stage. Plants were grown under three different temperatures: 23℃/13℃ for 18℃, 26℃/16℃ for 21℃ and 29℃/19℃ for 24℃ in the phytotron. The temperature was treated after transplanting and ended in early panicle initiation stage. Heading date of the two varieties were strongly affected by the temperature and were delayed in the 18℃. The plant height in the 18℃ was 21 % shorter than the 21℃ and 24℃ and the tiller and leaf number were increased in the 18℃. All the growth rates of the characters were the slowest in 18℃. The stem dry weight was significantly increased in 18℃. Nitrogen content was increased in the leaves of 18℃ whereas available phosphate and potassium content was found to be increased in the stems of 21℃ and 24℃. OsNRT 2.1 was overexpressed in the leaves and stems of 18℃ and OsNRT2.3a could be expressed in 18℃ and 21℃ temperatures whereas more expressed in 21℃. OsPT1 and OsPT6 could be expressed in the leaf of 18℃ and 24℃ but could be expressed in the stem of 18℃. OsHAK1 and OsHAK5 could be overexpressed in the leaves and stems of 18℃. For hormone, OsCKX2 gene was found to be up regulated in the leaves of 18℃ and OsIAA1 gene could be expressed more in the stem of 24℃.

  • PDF

Growth Monitoring for Soybean Smart Water Management and Production Prediction Model Development

  • JinSil Choi;Kyunam An;Hosub An;Shin-Young Park;Dong-Kwan Kim
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.58-58
    • /
    • 2022
  • With the development of advanced technology, automation of agricultural work is spreading. In association with the 4th industrial revolution-based technology, research on field smart farm technology is being actively conducted. A state-of-the-art unmanned automated agricultural production demonstration complex was established in Naju-si, Jeollanam-do. For the operation of the demonstration area platform, it is necessary to build a sophisticated, advanced, and intelligent field smart farming model. For the operation of the unmanned automated agricultural production demonstration area platform, we are building data on the growth of soybean for smart cultivated crops and conducting research to determine the optimal time for agricultural work. In order to operate an unmanned automation platform, data is collected to discover digital factors for water management immediately after planting, water management during the growing season, and determination of harvest time. A subsurface drip irrigation system was established for smart water management. Irrigation was carried out when the soil moisture was less than 20%. For effective water management, soil moisture was measured at the surface, 15cm, and 30cm depth. Vegetation indices were collected using drones to find key factors in soybean production prediction. In addition, major growth characteristics such as stem length, number of branches, number of nodes on the main stem, leaf area index, and dry weight were investigated. By discovering digital factors for effective decision-making through data construction, it is expected to greatly enhance the efficiency of the operation of the unmanned automated agricultural production demonstration area.

  • PDF

온도구배챔버에서 온도 상승에 따른 콩의 생육과 수량 반응에 미치는 영향 (The Effects of Increased Temperature on Soybean [Glycine max (L.) Merrill] Growth and Seed Yield Responses in Temperature Gradient Chamber)

  • 이윤호;조현숙;김준환;상완규;신평;백재경;서명철
    • 한국농림기상학회지
    • /
    • 제20권2호
    • /
    • pp.159-165
    • /
    • 2018
  • 본 연구는 급격하게 진행되고 있는 기후변화에 따른 콩의 생육과 종실 수량 반응을 온도구배챔버에서 수행하였다. 생식상 장기간의 고온 발생은 농업 생산성을 저해시키며, 인류의 식품안정성에도 영향을 줄 수 있다. 모든 품종이 $Ta+4^{\circ}C$에서 개화기간이 지연되는 현상을 보여 영양생장기보다 생식생장기의 고온에 대해 민감하게 반응을 하였다. 온도 변화에 대한 종실 수량 구성 반응을 보면 대원콩은 온도가 상승 할수록 협수, 종실 무게가 높아져 수량이 증가하였다. 반면 풍산나물콩과 대풍콩은 각각 $Ta+3^{\circ}C$$Ta+4^{\circ}C$사이에서 각각 일정 온도를 벗어나게 되면 온도에 민감하게 반응하여 착협수와 100립중이 감소를 하여 수량 감소로 이어졌다. 종자 크기로 보았을 때 대립 품종인 대원콩은 일정 온도 범위까지는 수량이 증가 할 것으로 판단된다. 반면 중립과 소립품종인 대풍콩과 풍산 나물콩은 일정 온도를 벗어나게 되면 수량이 감소 할 것으로 판단된다.