• Title/Summary/Keyword: Crop planting data

Search Result 69, Processing Time 0.03 seconds

Neofusicoccum ribis Associated with Leaf Blight on Rubber (Hevea brasiliensis) in Peninsular Malaysia

  • Nyaka Ngobisa, A.I.C.;Zainal Abidin, M.A.;Wong, M.Y.;Wan Noordin, M.W.D.
    • The Plant Pathology Journal
    • /
    • v.29 no.1
    • /
    • pp.10-16
    • /
    • 2013
  • Hevea brasiliensis is a natural source of rubber and an important plantation tree species in Malaysia. Leaf blight disease caused by Fusicoccum substantially reduces the growth and performance of H. brasiliensis. The aim of this study was to use a combination of both morphological characteristics and molecular data to clarify the taxonomic position of the fungus associated with leaf blight disease. Fusicoccum species were isolated from infected leaves collected from plantations at 3 widely separated locations - Selangor, Perak, and Johor states - in Peninsular Malaysia in 2010. All the isolates were identified according to their conidial patterns and DNA sequences generated from internal transcribed spacers (ITS1 and ITS2), the 5.8S rRNA, and an unknown locus (BotF15) containing microsatellite repeats. Based on taxonomic and sequence data, Neofusicoccum ribis was identified as the main cause of leaf blight disease in H. brasiliensis in commercial plantations in Malaysia. A pathogenicity trial on detached leaves further confirmed that N. ribis causes leaf blight disease. N. ribis is an important leaf pathogen, and its detection in Malaysia has important implications for future planting of H. brasiliensis.

Growth Characteristics of Strawberry and Kidney Bean Companion Planting in Building-integrated Urban Agriculture (건축물 일체형 도시농업에서 딸기와 강낭콩 공영식재에 따른 생육 특성)

  • Hyeon A Lee;Sun Yeong Lee;Yong Han Yoon;Jin Hee Ju
    • Journal of Environmental Science International
    • /
    • v.32 no.12
    • /
    • pp.955-964
    • /
    • 2023
  • This study was conducted to obtain basic data on efficient and eco-friendly crop cultivation for urban residents who enjoy urban agriculture as a hobby or leisure activity. We planted strawberry(Fragaria x ananassa)(S) and kidney bean (Phaseolus vulgaris var. humilis)(K) in different ratios to analyze the differences in soil environment, growth, physiology, and productivity, and to investigate the effects. Strawberry growth was optimal with S1K2 ratio, whereas the S1K1 ratio treatment showed the highest levels of physiology and productivity. In terms of growth and physiology, kidney beans tended to perform best in S1K2 treatment. The average number of productive pods was two, with a highest average value of 2.3 being recorded in S2K1 treatment planted with a high percentage of strawberries. In terms of growth, physiology, and prodctivity our findings indicate that it would be desirable to plant starwberries and kidney bean in a 1:1 ratio. However, considering the environmental characteristics of walls and rooftops, it is necessary to effectively manage crops suitable for these conditions. Furthermore, additional studies should be conducted to analyze the quality of fruits and seeds producted, both qualitatively and quantitatively in the future.

Estimation of Optimal and Minimal Water Requirement for Chinese Cabbage and Maize on Water Management using Weighable Lysimeters (중량식 라이시미터에서 물관리에 따른 배추, 옥수수의 적정 및 최소 물 필요량 산정)

  • Ok, Jung-hun;Han, Kyung-hwa;Hur, Seoung-oh;Hwang, Seon-Ah;Kim, Dong-Jin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.205-214
    • /
    • 2020
  • In this study, we performed to evaluate the water balance during the cultivation of Chinese cabbage and maize according to the soil type and water management method using weighable lysimeters, and to estimate the crop water stress coefficient and minimal water requirement by considering crop productivity and water deficiency. In 2018, Chinese cabbage cultivation period was not irrigated due to frequent rainfall two weeks after planting, so there was no difference in irrigation amount between the non-irrigated and the irrigated and little difference in crop yield. Excluding the Chinese cabbage cultivation in 2018, in the cultivation of Chinese cabbage and maize, the crop yield of irrigated plots was higher than that of non-irrigated plots. The evapotranspiration of irrigated plots was also generally higher than non-irrigated plots. Crop yield and evapotranspiration are closely related, and transpiration is active as biomass increases. The crop water stress coefficients in the middle and the late stage were 0.8 and 0.8 for Chinese cabbage and 0.8 and 0.5 for maize, respectively. The minimal water requirements for Chinese cabbage and maize were 82.0% and 68.8%, respectively, compared to the optimal water requirements (239.4 mm for Chinese cabbage and 466.9 mm for maize). These results can be used as basic data for water management for crop cultivation by securing the minimum amount of irrigation in case of water deficiency.

Effect of Irrigation Methods on the Growth and Yield of Rice in Desert Climates (사막토양 환경에서 벼 재배시 관개방법에 따른 생육 및 수량 특성)

  • Jung, Ki-Youl;Lee, Sang-Hun;Jeong, Jae-Hyeok;Chun, Hyen-Chung;Chea, Se-Eun;Kim, Sang-Yoon;Jeon, Seung-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.3
    • /
    • pp.147-154
    • /
    • 2022
  • This study was conducted by directly sowing Asemi in late April at 30 × 10 cm intervals to determine the optimal irrigation method and irrigation amount to maximize the use of limited agricultural water and to increase the yield when growing rice in a desert climate. Conventional irrigation (Conv.), surface drip irrigation (Sur), subsurface drip irrigation (Sub.), and sprinkler irrigation (Spr.) methods were used. The following amounts of irrigation were tested based on field capacity (0.33 bar): 80% (V/V, FC80), 100% (FC100), and 120% (FC120), and data for 2 years were averaged. The total amount of irrigation by irrigation method was the lowest, at 627 ton/10 a, for Sub. irrigation with the FC80 treatment, which was 60.4% less than the amount of irrigation with the FC120 treatment (1,584 ton/10a). Sub. irrigation with the FC120 treatment gave the greatest amount of rice, at 665 kg/10 a, and this condition obtained a yield of 88.1% (754 kg/10 a) of the yield obtained with the conventional treatment. Therefore, when planting rice in a desert climate, subsurface drip irrigation at 120% of field capacity is considered advantageous to increase water use efficiency and crop yield.

Meteorological Constraints and Countermeasures in Major Summer Crop Production (하작물의 기상재해와 그 대책)

  • Shin-Han Kwon;Hong-Suk Lee;Eun-Hui Hong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.398-410
    • /
    • 1982
  • Summer crops grown in uplands are greatly diversified and show a large variation in difference with year and location in Korea. The principal factor for the variation is weather, in which precipitation and temperature play a leading role and such a weather factors as wind, sun lights also influence production of the summer crops. Since artificial control of weather conditions as a main stress factor for crop production is almost impossible, it must be minimized only by an improvement of cultivation techniques and crop improvement. Precipitation plays a role as one of the most important factor for production of the summer crops and it is considered in two aspects, drought and excess moisture. This country, which belongs to monsoon territory, necessarily encounter one of this stress almost every year, even though the level is different. Therefore, the facilities for both drought and excess moisture are required, but actually it is not easy to complete for them. On this account, crops tolerant to drought, excess moisture and pests should be considered for establishing summer crops. For the districts damaged habitually every season, adequate crops should be cultured and appropriate method of planting, drainage and weed control should be applied diversely. Injuries by temperature is mainly attributed to lower temperature particularly in late fall and early spring, although higher temperature often causes some damages depending upon the kind of crops. Sometimes, lower temperature in summer season playa critical role for yield reduction in the summer crops. However, certain crops are prevented to some extent from this kind of stress by improving varieties tolerant to cold, hot weather or early maturing varieties. As is often the case, control of planting time or harvesting is able to be a good management for escaping the stress. Lodging, plant diseases and pests are considered as a direct or indirect damage due to weather stress, but these are characters able to be overcome by means of crop improvement and also controlled by other suitable methods. In addition, polytical supports capable of improving constitution of agriculture into modern industry is urgently required by programming of data for the damages, establishment of damage forecasting and compensation system.

  • PDF

Fitness cost and competitive ability of transgenic herbicide-tolerant rice expressing a protoporphyrinogen oxidase gene

  • Chun, Young Jin;Kim, Dae In;Park, Kee Woong;Jeong, Soon-Chun;Park, Sangkyu;Back, Kyoungwhan;Kim, Chang-Gi
    • Journal of Ecology and Environment
    • /
    • v.36 no.1
    • /
    • pp.39-47
    • /
    • 2013
  • The expression of transgenic traits in genetically modified crops is sometimes associated with decreases in crop performance or fitness. These decreases in performance or fitness of transgenic plants in unfavourable conditions may provide valuable information about the ecological consequences of transgene escape. In a glasshouse trial, we tested the cost associated with resistance to herbicides by comparing the growth, yield, and competitive ability of transgenic rice with its parental non-transgenic line. This new line was developed for constitutive overexpression of protoporphyrinogen oxidase (PPO) to increase resistance to herbicides. We evaluated nine agronomic traits of transgenic and non-transgenic rice grown in a replacement series design over four densities. Competitive ability was also assessed between transgenic and non-transgenic plants by analyzing their relative yields based on biomass and seed weight data. Our results indicated that non-transgenic plants showed greater performance than did the transgenic plants when those genotypes were grown in mixtures. The non-transgenic rice plants exhibited superior competitive ability at certain combinations of planting densities and genotype proportions. These results suggest that PPO-herbicide resistance incurs some costs in plant performance and competitive ability.

Theoretical Design for the Production of Quinoa (Chenopodium quinoa Willd.) in a Closed Plant Factory

  • Bae, Jong Hyang;Austin, Jirapa;Jeon, Yoon-A;Cha, Mi-Kyung;Cho, Young-Yeol
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.840-844
    • /
    • 2016
  • Quinoa (Chenopodium quinoa Willd.) is a grain crop with high nutritional value. The leaves and sprouts of quinoa can also be consumed either raw or cooked, providing considerably nutritional value as well as high antioxidant and anticancer activities. This study was carried out to obtain basic data to assist in the practical design of a plant factory with artificial lighting for the cultivation of quinoa as a leafy vegetable. We estimated the energy content of the quinoa and the electrical energy required to produce this crop. The yield was 1,000 plants per day, with a planting density and light intensity of $0.015m^2$ ($15{\times}10cm$) and $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. The total number of plants, cultivation area, and electricity consumption were estimated to be 25,000, $375m^2$, and $93,750{\mu}mol{\cdot}s^{-1}$, respectively. White fluorescent lamps were used at a power of 20.4 kW from 1,857 fluorescent lamps (FL, 55 W), and the cost for electricity was approximately 1,820 dollars (exchange rate of $1 = 1,200 won) per month. For a daily harvest of 1,000 plants per day in a closed plant factory, the estimated light installation cost, total installation cost, and total production cost would be 15,473, 46,421, and 55,704 dollars, respectively. The calculated production cost per plant, including labor costs, would be 27 cents for the 25-day cultivation period, with a marketable ratio of 80%. Considering the annual total expenses, income, and depreciation costs, the selling price per plant was estimated to be approximately 56 cents.

Zoning of Agroclimatic Regions Based on Climatic Characteristics During the Rice Planting Period (수도재배를 위한 농업지대기후구분)

  • Choi, Don-Hyang;Jung, Yeong-Sang;Kim, Byung-Chul;Kim, Man-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.3
    • /
    • pp.229-235
    • /
    • 1985
  • Zoning of the agroclimatic regions was attempted based on the distribution of drought index, effective temperature, meteorological factors and their standard deviation and a climatic productivity derived from yield response of rice to temperature and sunshine hours. The meteorological data obtained from synoptic weather stations under the Central Meteorology Office and simple weather observatories under the Rural Development Administration at 155 locations throughout the country were computerized in the PDP11/70, RDA Computer Center, to analyze the climatic similarities among the locations, except the Jeju Island. The nineteen different agroclimatic regions were classified, ego the Taebaeg Mountainous Region. the Charyung Southern Plain Region, etc., and the climatic characteristics of the regions were identified.

  • PDF

Calculation of Crop Loads for Structural Design of Greenhouse (온실의 구조설계용 작물하중 산정)

  • Na, Wook-Ho;Lee, Jong-Won;Rasheed, Adnan;Kwak, Cheul-Soon;Lee, Si-Young;Yoon, Yong-Cheol;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.301-309
    • /
    • 2017
  • This study was conducted to provide basic data needed to calculate the crop loads for the greenhouse design. Four countries' crop loads for greenhouse structures were compared and the crop loads were measured directly and analyzed for various greenhouse crops, including tomato, strawberry, cucumber, and eggplant. According to the analysis results of four country's standards for the design crop loads, it was judged that the new design crop loads suit for greenhouse crops in our country should be suggested because our standards just used the design crop loads of other countries. The maximum crop loads per plant of tomato, cucumber, eggplant, and strawberry were 3.9, 0.75, 1.9 and $2.1kgf{\cdot}plant^{-1}$, respectively. The crop load per unit area of tomato was $8.5kgf{\cdot}m^{-2}$, which was much greater than the cucumber and eggplant's crop load of 2.1 and $2.4kgf{\cdot}m^{-2}$ respectively. The crop loads of tomato and cucumber, suggested by the greenhouse structure design standard of Korea, is $15kgf{\cdot}m^{-2}$, which is far greater than the values suggested by this research. It was judged that this was because our standard just used the Dutch standard, our crop load standard should be reviewed considering this difference. The crop load of strawberry, including the growing bed, was $21.0kgf{\cdot}m^{-2}$, which was much greater than the crop load in the Dutch standard.

Estimating the Yield of Potato Non-Mulched Using Climatic Elements (기상자료를 이용한 무피복 재배 감자의 수량 예측)

  • Choi, Sung-Jin;Lee, An-Soo;Jeon, Shin-Jae;Kim, Kyeong-Dae;Seo, Myeong-Cheol;Jung, Woo-Suk;Maeng, Jin-Hee;Kim, In-Jong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.1
    • /
    • pp.89-96
    • /
    • 2014
  • We aimed to evaluate the effects of climatic elements on potato yield and create a model with climatic elements for estimating the potato yield, using the results of the regional adjustment tests of potato. We used 86 data of the yield data of a potato variety, Sumi, from 17 regions over 11 years. According to the results, the climatic elements showed significant level of correlation coefficient with marketable yield appeared to be almost every climatic elements except wind velocity, which was daily average air temperature (Tave), daily minimum air temperature (Tmin), daily maximum air temperature(Tmax), daily range of air temperature (Tm-m), precipitation (Prec.), relative humidity (R.H.), sunshine hours (S.H.) and days of rain over 0.1 mm (D.R.) depending on the periods of days after planting or before harvest. The correlations between these climatic elements and marketable yield of potato were stepwised using SAS, statistical program, and we selected a model to predict the yield of marketable potato, which was $y=7.820{\times}Tmax_-1-6.315{\times}Prec_-4+128.214{\times}DR_-8+91.762{\times}DR_-3+643.965$. The correlation coefficient between the yield derived from the model and the real yield of marketable yield was 0.588 (DF 85).