• Title/Summary/Keyword: Crop pathogens

Search Result 228, Processing Time 0.026 seconds

Fungicide Sensitivity among Isolates of Colletotrichum truncatum and Fusarium incarnatum-equiseti Species Complex Infecting Bell Pepper in Trinidad

  • Ramdial, Hema;Abreu, Kathryn De;Rampersad, Sephra N.
    • The Plant Pathology Journal
    • /
    • v.33 no.2
    • /
    • pp.118-124
    • /
    • 2017
  • Bell pepper is an economically important crop worldwide; however, production is restricted by a number of fungal diseases that cause significant yield loss. Chemical control is the most common approach adopted by growers to manage a number of these diseases. Monitoring for the development to resistance to fungicides in pathogenic fungal populations is central to devising integrated pest management strategies. Two fungal species, Fusarium incarnatum-equiseti species complex (FIESC) and Colletotrichum truncatum are important pathogens of bell pepper in Trinidad. This study was carried out to determine the sensitivity of 71 isolates belonging to these two fungal species to fungicides with different modes of action based on in vitro bioassays. There was no significant difference in log effective concentration required to achieve 50% colony growth inhibition ($LogEC_{50}$) values when field location and fungicide were considered for each species separately based on ANOVA analyses. However, the $LogEC_{50}$ value for the Aranguez-Antracol locationfungicide combination was almost twice the value for the Maloney/Macoya-Antracol location-fungicide combination regardless of fungal species. $LogEC_{50}$ values for Benomyl fungicide was also higher for C. truncatum isolates than for FIESC isolates and for any other fungicide. Cropping practices in these locations may explain the fungicide sensitivity data obtained.

Beneficial Effects of Fluorescent Pseudomonads on Seed Germination, Growth Promotion, and Suppression of Charcoal Rot in Groundnut (Arachis hypogea L.)

  • Shweta, Bhatia;Maheshwari, Dinesh Kumar;Dubey, Ramesh Chand;Arora, Daljit Singh;Bajpai, Vivek K.;Kang, Sun-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1578-1583
    • /
    • 2008
  • Rhizobacteria are used as inoculants to enhance crop yield and for biological control of fungal pathogens. Fluorescent pseudomonads isolated from the rhizosphere of groundnut showed suppression of the phytopathogen Macrophomina phaseolina that causes charcoal rot of groundnut, an economically important agroproduct. Two strains of fluorescent pseudomonads, designated as PS1 and PS2, were selected as a result of in vitro antifungal activity. After 5 days of incubation at $28{\pm}1^{\circ}C$, both PS1 and PS2 caused clear inhibition zones in dual cultures, restricting the growth of M. phaseolina by 71 % and 74%, respectively. Both the strains were capable of producing siderophores, indole acetic acid, and hydrocyanic acid, and causing phosphate solubilization under normal growth conditions. These strains, when used as inoculants in groundnut, enhanced germination up to 15% and 30% with subsequent increase in grain yield by 66% and 77%, respectively. Conversely, when the pathogen alone was tested 57% decrease in yield was recorded. Thus the studies revealed the potential of the two pseudomonads not only as biocontrol agents against M. phaseolina, but also as a good growth promoter for groundnut.

Development of PCR-based markers for discriminating Solanum berthaultii using its complete chloroplast genome sequence

  • Kim, Soojung;Cho, Kwang-Soo;Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.207-216
    • /
    • 2018
  • Solanum berthaultii is one of the wild diploid Solanum species, which is an excellent resource in potato breeding owing to its resistance to several important pathogens. On the other hand, sexual hybridization between S. berthaultii and S. tuberosum (potato) is limited because of their sexual incompatibility. Therefore, cell fusion can be used to introgress various novel traits from this wild species into the cultivated potatoes. After cell fusion, it is crucial to identify fusion products with the aid of molecular markers. In this study, the chloroplast genome sequence of S. berthaultii obtained by next-generation sequencing technology was described and compared with those of five other Solanum species to develop S. berthaultii specific markers. A total sequence length of the chloroplast genome is 155,533 bp. The structural organization of the chloroplast genome is similar to those of the five other Solanum species. Phylogenic analysis with 25 other Solanaceae species revealed that S. berthaultii is most closely located with S. tuberosum. Additional comparison of the chloroplast genome sequence with those of the five Solanum species revealed 25 SNPs specific to S. berthaultii. Based on these SNPs, six PCR-based markers for differentiating S. berthaultii from other Solanum species were developed. These markers will facilitate the selection of fusion products and accelerate potato breeding using S. berthaultii.

Effect of Introducing Chitinase Gene on the Resistance of Tuber Mustard against White Mold

  • Ojaghian, Seyedmohammadreza;Wang, Ling;Xie, Guan-Lin
    • The Plant Pathology Journal
    • /
    • v.36 no.4
    • /
    • pp.378-383
    • /
    • 2020
  • The objective of this research was introduction of chit42 to tuber mustard plants through Agrobacteriummediated transformation against white mold caused by Sclerotinia sclerotiorum. The binary plasmid pGisPEC1 was used in this study. Polymerase chain reaction analysis detected the transgene in 27 transformants with a transformation efficiency of 6.9%. Southern blot test was used to assess the copy number of transgene in tuber mustard plants. One, two, two, and two chit42-related bands were observed in the transformed lines TMB4, TMB7, TMB12, and TMB18, respectively. Enzymatic tests showed a significant increase in the activity of endochitinase in protein isolated from leaf tissues of chit42 transgenic 75-day tuber mustard lines. The pathogenicity of three pathogen isolates was tested on the leaves of transformed plans. The results of current study showed that expression of the gene chit42 in tuber mustard plants markedly reduced infection radius on the leaves 7 days after inoculation with the fungus.

Feasibility of Reclaimed Wastewater and Waste Nutrient Solution for Crop Production in Korea

  • Choi, Bong-Su;Lee, Sang-Soo;Awad, Yasser M.;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.118-124
    • /
    • 2011
  • BACKGROUND: Development of water recycle technologies is important for human health and sustainable agriculture. However, few studies have been conducted to examine the purification methods or the water quality of reclaimed wastewater in Korea. METHODS AND RESULTS: In this study, the different wastewaters including reclaimed wastewater and waste nutrient solution (NS) were evaluated. The changes of water quality in reclaimed wastewater and NS were determined using ultraviolet (UV) treatment and sand filtration with charcoal. Our results showed that one of the most critical limitations of reusing wastewater was the presence of harmful pathogens that possibly cause human health risks. CONCLUSION(s): This study suggests that the application of UV treatment or combined with sand filtration on reclaimed wastewater and waste NS effectively removes the total coliform bacteria below the harmful or acceptable level. For future studies, a long-term field monitoring after applying reclaimed wastewater or NS is needed.

Fungal Endophytes from Three Cultivars of Panax ginseng Meyer Cultivated in Korea

  • Park, Sang-Un;Lim, Hyoun-Sub;Park, Kee-Choon;Park, Young-Hwan;Bae, Han-Hong
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.107-113
    • /
    • 2012
  • In order to investigate the diversity of endophytes, fungal endophytes in Panax ginseng Meyer cultivated in Korea were isolated and identified using internal transcribed spacer (ITS) sequences of ribosomal DNA. Three cultivars of 3-year-old ginseng roots (Chunpoong, Yunpoong, and Gumpoong) were used to isolate fungal endophytes. Surface sterilized ginseng roots were placed on potato dextrose agar plates supplemented with ampicilin and streptomycin to inhibit bacterial growth. Overall, 38 fungal endophytes were isolated from 12 ginseng roots. According to the sequence analysis of the ITS1-5.8S-ITS2, 38 fungal isolates were classified into 4 different fungal species, which were Phoma radicina, Fusarium oxysporum, Setophoma terrestris and Ascomycota sp. 2-RNK. The most dominant fungal endophyte was P. radicina in 3 cultivars. The percentage of dominant endophytes of P. radicina was 65.8%. The percentage of colonization frequency of P. radicina was 80%, 52.9%, and 75% in Chunpoong, Yunpoong, and Gumpoong, respectively. The second most dominant fungal endophyte was F. oxysporum. The diversity of the fungal endophytes was low and no ginseng cultivar specificity among endophytes was detected in this study. The identified endophytes can be potential fungi for the production of bioactive compounds and control against ginseng pathogens.

Biogenic Volatile Compounds for Plant Disease Diagnosis and Health Improvement

  • Sharifi, Rouhallah;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.459-469
    • /
    • 2018
  • Plants and microorganisms (microbes) use information from chemicals such as volatile compounds to understand their environments. Proficiency in sensing and responding to these infochemicals increases an organism's ecological competence and ability to survive in competitive environments, particularly with regard to plant-pathogen interactions. Plants and microbes acquired the ability to sense and respond to biogenic volatiles during their evolutionary history. However, these signals can only be interpreted by humans through the use of state-of the-art technologies. Newly-developed tools allow microbe-induced plant volatiles to be detected in a rapid, precise, and non-invasive manner to diagnose plant diseases. Beside disease diagnosis, volatile compounds may also be valuable in improving crop productivity in sustainable agriculture. Bacterial volatile compounds (BVCs) have potential for use as a novel plant growth stimulant or as improver of fertilizer efficiency. BVCs can also elicit plant innate immunity against insect pests and microbial pathogens. Research is needed to expand our knowledge of BVCs and to produce BVC-based formulations that can be used practically in the field. Formulation possibilities include encapsulation and sol-gel matrices, which can be used in attract and kill formulations, chemigation, and seed priming. Exploitation of biogenic volatiles will facilitate the development of smart integrated plant management systems for disease control and productivity improvement.

A Biostimulant Preparation of Brown Seaweed Ascophyllum nodosum Suppresses Powdery Mildew of Strawberry

  • Bajpai, Sruti;Shukla, Pushp Sheel;Asiedu, Samuel;Pruski, Kris;Prithiviraj, Balakrishnan
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.406-416
    • /
    • 2019
  • Strawberry, an important fruit crop, is susceptible to a large number of pathogens that reduce fruit quality and productivity. In this study, the effect of a biostimulant prepared from Ascophyllum nodosum extract (ANE) (0.1%, 0.2%, and 0.3%) was evaluated on powdery mildew progression under greenhouse and field conditions. In the greenhouse, application of 0.2% ANE showed maximum reduction in powdery mildew progression as compared to the control. Forty-eight hour post-inoculation, foliar spray of 0.2% ANE reduced spore germination by 75%. Strawberry leaves sprayed with ANE showed higher total phenolic and flavonoid content in response to powdery mildew infection. Furthermore, application of ANE elicited defense response in strawberry plants by induction of defense-related enzymes, such as phenylalanine ammonia lyase, polyphenol oxidase, and peroxidase activity. In field conditions, foliar spray of 0.2% ANE showed a reduction of 37.2% of natural incidence of powdery mildew infection as compared to the control. ANE sprayed plant also reduces the severity of powdery mildew infection under natural conditions. These results indicate that application of ANE induces the strawberry plant's active defense against powdery mildew infection by induction of secondary metabolism and regulating the activities of defense-related enzymes.

Phytobiome as a Potential Factor in Nitrogen-Induced Susceptibility to the Rice Blast Disease

  • Jeon, Junhyun
    • Research in Plant Disease
    • /
    • v.25 no.3
    • /
    • pp.103-107
    • /
    • 2019
  • Roles of nutrients in controlling plant diseases have been documented for a long time. Among the nutrients having impact on susceptibility/resistance to crop diseases, nitrogen is one of the most important nutrients for plant growth and development. In rice plants, excess nitrogen via fertilization in agricultural systems is known to increase susceptibility to the rice blast disease. Mechanisms underlying such phenomenon, despite its implication in yield and sustainable agriculture, have not been fully elucidated yet. A few research efforts attempted to link nitrogen-induced susceptibility to concomitant changes in rice plant and rice blast fungus in response to excess nitrogen. However, recent studies focusing on phytobiome are offering new insights into effects of nitrogen on interaction between plants and pathogens. In this review, I will first briefly describe importance of nitrogen as a key nutrient for plants and what changes excess nitrogen can bring about in rice and the fungal pathogen. Next, I will highlight some of the recent phytobiome studies relevant to nitrogen utilization and immunity of plants. Finally, I propose the hypothesis that changes in phytobiome upon excessive nitrogen fertilization contribute to nitrogen-induced susceptibility, and discuss empirical evidences that are needed to support the hypothesis.

Evaluation of Resistance to Pepper Mild Mottle Virus (PMMoV) in Pepper Germplasm

  • Kingsley Ochar;Ho-Cheol Ko;Hee-Jong Woo;Hae-Ryun Kwak;On-Sook Hur
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.68-68
    • /
    • 2022
  • The pepper mild mottle virus (PMMoV), belonging to the tobamovirus genus, is currently one of the most destructive pathogens in pepper production. Tobamoviruses have been classified in terms of increased pathogenicity as pathotypes P0, P1, P1,2, P1,2,3 and P1,2,3,4, based on their ability to infect systemically Capsicum L0 , L1 , L2 , L3 and L4 resistant plants, respectively. Two hundred eighty pepper germplasms and 5 reference accessions known as resistant L alleles, were analyzed to select the resistance cultivars against PMMoV- P1,2,3 (CV130614-2) using bioassay and genetic markers. The susceptible accessions showed systemic symptom when inoculated with PMMoV- P1,2,3. However, accessions including IT223737, were resistant as they developed necrotic local lesions only on inoculated leaves, whereas no symptoms were observed on the upper leaves. Moreover, RT-PCR results for detecting the presence of virus were also negative. Thus, those accessions will be used as a novel source to facilitate introduction the resistant gene into commercial cultivars of pepper.

  • PDF