• 제목/요약/키워드: Crop parameters

검색결과 467건 처리시간 0.023초

토양 수분 유지를 위한 농업 환경 모니터링 IoT 시스템 구현 (Agricultural Environment Monitoring System to Maintain Soil Moisture using IoT)

  • 박정규;김재호
    • 사물인터넷융복합논문지
    • /
    • 제6권3호
    • /
    • pp.45-52
    • /
    • 2020
  • 본 논문에서는 농작물 수확량에 영향을 미치는 다양한 농업 매개 변수를 측정하고, 환경 정보를 모니터링 하는 시스템을 제안한다. 국제 기구의 분석에 따르면 전 세계 인구의 60%가 농업으로 생활을 유지하고 있다. 또한, 전 세계토양의 11%가 작물 재배에 이용되고 있다. 이런 이유로 농업은 국가 발전에 중요한 역할을 담당하고 있다. 날씨 또는 환경 문제 등으로 인해 농업에 문제가 발생하면 국가 발전에 문제가 될 수 있다. 이러한 문제를 해결하기 위해서 IoT 기술을 활용하여 농업의 현대화를 하는 것이 중요하다. 농업에서 IoT 기술을 적용하여 스마트 환경을 구축하여 농업환경을 개선할 수 있다. 논문에서 제안하는 시스템을 검증하기 위해서 콩 재배농장에서 실험을 수행하였다. 실험결과 제안하는 시스템을 이용하여 콩 재배 토양의 수분을 자동으로 40%로 유지할 수 있음을 보였다.

Effects of Ozone and Soil Salinity, Singly and in Combination, on Growth, Yield and Leaf Gas Exchange Rates of Two Bangladeshi Wheat Cultivars

  • Kamal, Mohammed Zia Uddin;Yamaguchi, Masahiro;Azuchi, Fumika;Kinose, Yoshiyuki;Wada, Yoshiharu;Funada, Ryo;Izuta, Takeshi
    • Asian Journal of Atmospheric Environment
    • /
    • 제9권2호
    • /
    • pp.173-186
    • /
    • 2015
  • In Bangladesh, increases in the tropospheric ozone ($O_3$) concentration and in soil salinization may lead to crop damage. To clarify the effects of $O_3$ and/or soil salinity on Bangladeshi wheat cultivars, BAW1059 (salt-tolerant) and Shatabdi (salt-sensitive) were exposed to 70-day treatments with $O_3$ (charcoal-filtered air (CF), $1.0{\times}O_3$, and $1.5{\times}O_3$) and different levels of soil salinity (0, 4, and $8dS\;m^{-1}$). In both cultivars, the whole-plant dry mass and grain yield were significantly reduced by exposure to $O_3$. Increased soil salinity caused significant reductions in whole-plant growth and yield in Shatabdi, but the reductions were negligible in BAW1059. No significant interactions between $O_3$ and salinity were detected for growth, yield, and leaf gas exchange parameters in both cultivars. We concluded that the effects of $O_3$ are not ameliorated by soil salinity in two Bangladeshi wheat cultivars, regardless of their salinity tolerance.

Principal Component Analysis and Molecular Characterization of Reniform Nematode Populations in Alabama

  • Nyaku, Seloame T.;Kantety, Ramesh V.;Cebert, Ernst;Lawrence, Kathy S.;Honger, Joseph O.;Sharma, Govind C.
    • The Plant Pathology Journal
    • /
    • 제32권2호
    • /
    • pp.123-135
    • /
    • 2016
  • U.S. cotton production is suffering from the yield loss caused by the reniform nematode (RN), Rotylenchulus reniformis. Management of this devastating pest is of utmost importance because, no upland cotton cultivar exhibits adequate resistance to RN. Nine populations of RN from distinct regions in Alabama and one population from Mississippi were studied and thirteen morphometric features were measured on 20 male and 20 female nematodes from each population. Highly correlated variables (positive) in female and male RN morphometric parameters were observed for body length (L) and distance of vulva from the lip region (V) (r = 0.7) and tail length (TL) and c' (r = 0.8), respectively. The first and second principal components for the female and male populations showed distinct clustering into three groups. These results show pattern of sub-groups within the RN populations in Alabama. A one-way ANOVA on female and male RN populations showed significant differences ($p{\leq}0.05$) among the variables. Multiple sequence alignment (MSA) of 18S rRNA sequences (421) showed lengths of 653 bp. Sites within the aligned sequences were conserved (53%), parsimony-informative (17%), singletons (28%), and indels (2%), respectively. Neighbor-Joining analysis showed intra and inter-nematodal variations within the populations as clone sequences from different nematodes irrespective of the sex of nematode isolate clustered together. Morphologically, the three groups (I, II and III) could not be distinctly associated with the molecular data from the 18S rRNA sequences. The three groups may be identified as being non-geographically contiguous.

Antioxidant Enzymes and Photosynthetic Responses to Drought Stress of Three Canna edulis Cultivars

  • Zhang, Wen-E;Wang, Fei;Pan, Xue-Jun;Tian, Zhi-Guo;Zhao, Xiu-Ming
    • 원예과학기술지
    • /
    • 제31권6호
    • /
    • pp.677-686
    • /
    • 2013
  • Edible canna is a productive starch source in some tropical and semitropical regions. In these regions, water deficit stress is one of factors that limit the crop yield. In the present study, we investigated seven physiological indexes and photosynthetic responses of three edible canna (Canna edulis Ker.) cultivars ('PLRF', 'Xingyu-1', and 'Xingyu-2') under 35 days drought stress. Our results indicated that drought treatment caused visible wilting symptoms in all cultivars, especially in 'Xingyu-1'. Coupled with the increase of wilting symptoms, relative water content (RWC) and chlorophyll content decreased progressively, malondialdehyde (MDA) content gradually increased, and key antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) activities increased first and then decreased in all three cultivars. The effect of water stress was more pronounced in 'Xingyu-1' than in 'PLRF' and 'Xingyu-2', and in lower leaves than in upper leaves. In addition, 35 days drought stress also significantly reduced the photosynthetic capacity. Consistent with antioxidant parameters, photosynthetic changes of 'Xingyu-2' were less than those of the other cultivars under water deficit stress. Drought stress caused a significant increase of water use efficiency (WUE) in 'Xingyu-2', but little in 'PLRF', and obvious decrease in 'Xingyu-1'. These results indicated that 'Xingyu-2' was more tolerant to drought stress than 'PLRF' and 'Xingyu-1' by maintaining lower lipid peroxidation and higher antioxidant enzyme activities.

Effect of Foliar and Root Application of Silicon Against Rice Blast Fungus in MR219 Rice Variety

  • Abed-Ashtiani, Farnaz;Kadir, Jugah-Bin;Selamat, Ahmad-Bin;Hanif, Ahmad Husni Bin-Mohd;Nasehi, Abbas
    • The Plant Pathology Journal
    • /
    • 제28권2호
    • /
    • pp.164-171
    • /
    • 2012
  • Rice blast disease caused by Magnaporthe grisea (Hebert) Barr [teleomorph] is one of the most devastating diseases in rice plantation areas. Silicon is considered as a useful element for a large variety of plants. Rice variety MR219 was grown in the glasshouse to investigate the function of silicon in conferring resistance against blast. Silica gel was applied to soil while sodium silicate was used as foliar spray at the rates of 0, 60, 120, 180 g/5 kg soil and 0, 1, 2, 3 ml/l respectively. The treatments were arranged in a completely randomized design. Disease severity and silicon content of leaves were compared between the non-amended controls and rice plants receiving the different rates and sources of silicon. Silicon at all rates of application significantly (${\alpha}$ = 0.05) reduced the severity of disease with highest reduction (75%) recorded in treatments receiving 120 g of silica gel. SEM/EDX observations demonstrated a significant difference in weight concentration of silicon in silica cells on the leaf epidermis between silicon treated (25.79%) and non treated plants (7.87%) indicating that Si-fertilization resulted in higher deposition of Si in silica cells in comparison with non-treated plants. Application of silicon also led to a significant increase in Si contents of leaves. Contrast procedures indicated higher efficiency of silica gel in comparison to sodium silicate in almost all parameters assessed. The results suggest that mitigated levels of disease were associated with silicification and fortification of leaf epidermal cells through silicon fertilization.

남한강 하류수역에서 식물플랑크톤 증식의 영향인자 및 수중유기를 기원 (The Effect Factors on the Growth of Phytoplankton and the Sources of Organic Matters in Downstream of South-Han River)

  • 박혜경;변명섭;최명재;김용진
    • 한국물환경학회지
    • /
    • 제24권5호
    • /
    • pp.556-562
    • /
    • 2008
  • We divided the downstream of South-Han River into three water zones, such as river zone, transition zone and lacustrine zone depending on the flow rate, and elucidated the major effect factors on the growth of phytoplankton and the sources of organic matters in each water zone. The difference of chlorophyll-a concentration which represents the standing crop of phytoplankton was statistically significant among the water zones. From the results of bivariate correlation analysis between chlorophyll-a concentration and water quality parameters in each water zone, the outflow of Chungju dam and hydraulic retention time of Lake Paldang which are directly related with the flow rate seemed to have obvious impact on phytoplankton growth in the downstream of South-Han River. The concentration of nutrients such as phosphorus and nitrogen exceeded the criterion of eutrophication and did not showed significant relationship with chlorophyll-a concentration. There were strong correlations between $BOD_5$ and chlorophyll-a concentrations in transition and lacustrine zone showing autochthonous production of phytoplankton was dominant source of organic matters in these zones especially in dry seasons. The results of this study show that the control of abundance of phytoplankton is the key target for reduction of the organic pollution in the downstream of South-Han River.

Transport of Urea in Waterlogged Soil Column: Experimental Evidence and Modeling Approach Using WAVE Model

  • Yoo, Sun-Ho;Park, Jung-Geun;Lee, Sang-Mo;Han, Gwang-Hyun;Han, Kyung-Hwa
    • Journal of Applied Biological Chemistry
    • /
    • 제43권1호
    • /
    • pp.25-30
    • /
    • 2000
  • The main form of nitrogen fertilizer applied to lowland rice is urea, but little is known about its transport in waterlogged soil. This study was conducted to investigate the transport of urea in waterlogged soil column using WAVE (simulation of the substances Water and Agrochemicals in the soil, crop and Vadose Environment) model which includes the parameters for urea adsorption and hydrolysis, The adsorption distribution coefficient and hydrolysis rate of urea were measured by batch experiments. A transport experiment was carried out with the soil column which was pre-incubated for 45 days under flooded condition. The urea hydrolysis rate (k) was $0.073h^{-1}$. Only 5% of the applied urea remained in soil column at 4 days after urea application. The distribution coefficient ($K_d$) of urea calculated from adsorption isotherm was $0.21Lkg^{-1}$, so it was assumed that urea that urea was a weak-adsorbing material. The maximum concentration of urea was appeared at the convective water front because transport of mobile and weak-adsorbing chemicals, such as urea, is dependent on water convective flow. The urea moved down to 11 cm depth only for 2 days after application, so there is a possibility that unhydrolyzed urea could move out of the root zone and not be available for crops. A simulated urea concentration distribution in waterlogged soil column using WAVE model was slightly different from the measured concentration distribution. This difference resulted from the same hydrolysis rate applied to all soil depths and overestimated hydrodynamic dispersion coefficient. In spite of these limitations, the transport of urea in waterlogged soil column could be predict with WAVE model using urea hydrolysis rate (k) and distribution coefficient ($K_d$) which could be measured easily from a batch experiment.

  • PDF

Relationship between Chemical Property and Microbial Activity of Reclaimed Tidal Lands at Western Coast Area in Korea

  • Ko, Eun-Seong;Joung, Ji-An;Kim, Chang-Hwan;Lee, Su Hwan;Sa, Tongmin;Choi, Joon-Ho
    • 한국토양비료학회지
    • /
    • 제47권4호
    • /
    • pp.254-261
    • /
    • 2014
  • The scientific information between microbial activities and chemical properties of reclaimed tidal soil is not enough to apply for reclamation projects. This study was conducted to investigate the relation between chemical properties and microbial activities of reclaimed tidal lands located at western coastal area (25 samples from Nampo, Ewon, Sukmoon and Shihwa sites). Most of the reclaimed soils showed chemical characteristics as salinity soil except Nampo site. The major component influenced the salinity of reclaimed soil was identified as a sodium from the relationship between EC and exchangeable cation. With an increase in EC of soil, the population of mesophilic bacteria decreases whereas halotolerant and halophilic bacteria increases. The population of mesophilic bacteria increased with an increase in both organic matter and dehydrogenase activity. However, the population of halotolerant and halophilic bacteria decreased with an increase in organic matter. Based on the relation between chemical property and microbial activity of reclaimed tidal soil, electrical conductivity and organic matter as chemical properties of soil, population of mesophilic bacteria, halotolerant and halophilic bacteria and dehydrogenase activity as microbial activities could be the major parameters for reclamation process.

A 90-Day Inhalation Toxicity Study of Ethyl Formate in Rats

  • Lee, Mi Ju;Kim, Hyeon-Yeong
    • Toxicological Research
    • /
    • 제33권4호
    • /
    • pp.333-342
    • /
    • 2017
  • Ethyl formate, a volatile solvent, has insecticidal and fungicidal properties and is suggested as a potential fumigant for stored crop and fruit. Its primary contact route is through the respiratory tract; however, reliable repeated toxicological studies focusing on the inhalation route have not been published to date. Therefore, the present study was conducted to investigate the safety of a 90-day repeated inhalation exposure in rats. Forty male and 40 female rats were exposed to ethyl formate vapor via inhalation at concentrations of 0, 66, 330, and 1,320 ppm for 6 hr/day, 5 days a week for 13 weeks. Clinical signs, body weights, food consumption, urinalysis, hematologic parameters, serum chemistry measurements, organ weights, necropsy, and histopathological findings were compared between the control and ethyl formate-exposed groups. Locomotor activity decreased during exposure and recovered afterward in male and female rats exposed to 1,320 ppm ethyl formate. Body weight and food consumption continuously decreased in both sexes exposed to 1,320 ppm ethyl formate from week 1 or 3 compared with the control values. The increases in adrenal weight and decreases in thymus weight were noted in both sexes exposed to ethyl formate at 1,320 ppm. Degeneration, squamous metaplasia of olfactory epithelium in the nasopharyngeal tissue, or both were noted in the male and female rats at 1,320 ppm and female rats at 330 ppm ethyl formate. Taken together, our results indicate that ethyl formate-induced changes were not observed in male and female rats at 330 and 66 ppm, respectively. This indicates that exposure to ethyl formate at concentrations below 66 ppm for 90 days is relatively safe in rats. This is the first report of a full-scale repeated inhalation toxicity assessment in rats and could contribute to controlling occupational environmental hazards related to ethyl formate.

Proline, Sugars, and Antioxidant Enzymes Respond to Drought Stress in the Leaves of Strawberry Plants

  • Sun, Cunhua;Li, Xuehua;Hu, Yulong;Zhao, Pingyi;Xu, Tian;Sun, Jian;Gao, Xiali
    • 원예과학기술지
    • /
    • 제33권5호
    • /
    • pp.625-632
    • /
    • 2015
  • Drought is a severe abiotic stress that affects global crop production. A drought model was created for 'Toyonoka' Fragaria ${\times}$ ananassa, and the effects of drought stress on contents of proline, sugars, and antioxidant enzyme activities were investigated. Strawberry transplants with identical growth were chosen for the experiments and the randomized design included four replications (10 plants per block). The experimental sets differed in the moisture level of the culture medium relative to the range of moisture content as follows: control, 70-85%; mild drought stress, 50-60%; moderate drought stress, 40-50%; and severe drought stress, 30-40%. Drought stress was imposed by limiting irrigation. Plants were sampled and physiological parameters w ere measured on 0, 2, 4, 6, 8, and 10 days after the commencement of droughts tress. The water potential of strawberry leaves decreased in the plants under mild, moderate, and severe stress during the course of the water stress treatment and exhibited a significant difference from the control. Strawberry leaves subjected to drought stress had higher accumulation of proline, sugars, and malondialdehyde, and higher activities of superoxide dismutase, peroxidase, and catalase than leaves of control plants. Malondialdehyde levels increased in parallel with the severity and duration of drought stress. By contrast, antioxidant enzyme activity displayed dynamic responses to drought stress, first increasing and subsequently decreasing as the severity and duration of drought stress increased. These results suggest that strawberry plants respond to drought stress by altering the activities of antioxidant enzymes and the levels of osmotically active metabolites. These biochemical response changes may confer adaptation to drought stress and improve the capacity of plants to withstand water-deficit conditions.