• Title/Summary/Keyword: Crop combination

Search Result 378, Processing Time 0.025 seconds

A New Early-Maturing, High Quality Rice Cultivar 'Joami' (조생 고품질 벼 신품종 '조아미')

  • Kang, Jong-Rae;Nam, Min-Hee;Kwak, Do-Yeon;Jung, Jin-Il;Kim, Dae-Sik;Kim, Jeong-Il;Song, You-Chun;Yeo, Un-Sang;Lee, Jong-Hee;Park, No-Bong;Park, Dong-Soo;Yi, Gi-Hwan;Cho, Jun-Hyeon;Kim, Chun-Song;Lee, Ji-Yoon;Jeon, Myeong-Gee;Shin, Mun-Sik;Oh, Byeong-Geon;Kang, Hang-Won;Ahn, Jin-Gon
    • Korean Journal of Breeding Science
    • /
    • v.42 no.6
    • /
    • pp.615-622
    • /
    • 2010
  • A new rice cultivar, 'Joami', was developed by the rice breeding team of Sangju Substation, National Institute of Crop Science (NICS), Rural Development Administration. It was selected by a bulk and pedigree methods from a cross-combination among 'Sambaegbyeo', 'Yukara', and 'Tonggae112'. A promising line of YR20557-1-1-3-B-3 was designated as 'Sangju 36' in 2006. Local adaptability test of 'Sangju 36' was conducted at ten sites throughout the Korean peninsula during three years from 2006 to 2008. 'Sangju 36', thereafter, was registered as 'Joami' in 2008. The cultivar headed on July 30 in the test of local adaptability. Endosperm of 'Joami' is translucent with clear chalkiness and has 5.4% higher head rice ratio than that of 'Odaebyeo'. The yield potential of 'Joami' in milled rice is about 5.40 MT/ha under ordinary fertilizer level of local adaptability test, which was 6% higher than that of 'Odaebyeo'. In an alpine area of Korea, the rice variety needs a cold tolerance and a resistance to blast disease. 'Joami' showed a tolerance reaction at Chuncheon cold tolerance screening nursery and exhibited resistance reaction to blast disease in nation-wide disease screening nursery. Therefore, 'Joami' would be well adaptable to mid-mountainous area at central and southern part of Korean peninsula.

Improvement of Shoot Regeneration from Scutella-Derived Callus in Rice

  • Kim, Yong-Wook;Cho, Joon-Hyeong;Lee, Jang-Yong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.52-60
    • /
    • 2004
  • The optimized in vitro culture system was investigated for improvement of regeneration efficiencies by observing the responses of scutella-derived callus of Korean rice (Oryza sativa L.). Large variations of callus induction (43.9-93.9%) and shoot regeneration (0-88.7%) were observed among the rice cultivars depending on medium. However, shoot regeneration was significantly improved by selected utilization of basal medium, growth regulators, and carbon sources. N6 basal medium was more efficient for embryogenic callus induction than MS or LS basal medium, while MS was superior to N6 for shoot regeneration. The calli of highly regenerative cultivars grew faster and showed higher rates of green tissue formation (GT) and shoot regeneration (SR) and lower rate of callus browning (CB) than those of recalcitrant cultivars. Although a higher level of kinetin stimulated the GT and SR in highly regenerative cultivars, $10\textrm{mgL}^{-1}$ kinetin generally suppressed the GT and SR, while CB was accelerated compared to $2\textrm{mgL}^{-1}$ kinetin. Additional benefits of sorbitol combined with maltose (or sucrose) under $5\textrm{mgL}^{-1}$ kinetin were certainly confirmed on regeneration efficiencies compared to sucrose alone as carbon source and osmotic regulator. This combination showed high rate of GT and SR with multiple shoots while low rate of CB. With MSRK5SM-Pr medium ($5\textrm{mgL}^{-1}$ kinetin, 3% sorbitol, 2% maltose, $500\textrm{mgL}^{-1}$ proline), the regeneration efficiencies of total 17 out of 24 cultivars were practically improved 160% on average compared to MSRK2S ($2\textrm{mgL}^{-1}$ kinetin, 3% sucrose) control medium. Especially, the medium was most effective to the cultivars showing a medium level of regenerability such as Daesanbyeo and Dongjinbyeo and Suwon477, enhancing efficiencies more than 300-600% compared to MSRK2S medium.

Development of efficient protocol for screening of rice genotypes using physiological traits for salt tolerance

  • Kim, Sung-Mi;Reddy, Inja Naga Bheema Lingeswar;Yoon, In Sun;Kim, Beom-Gi;Kwon, Taek-Ryoun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.189-189
    • /
    • 2017
  • Salinity is one of the major abiotic stresses that severely affect crop production throughout the world; especially rice plant which is generally categorized as a typical glycophyte as it cannot grow in the presence of salinity. Phenotypic resistance of salinity is expressed as the ability to survive and grow in a salinity condition. Salinity resistance has, at least implicitly, been treated as a single trait. Physiological studies of rice suggest that a range of characteristics (such as low shoot sodium concentration, compartmentation of salt in older rather than younger leaves, high potassium concentration, high $K^+/Na^+$ ratio, high biomass and plant vigour) would increase the ability of the plant to cope with salinity. Criteria for evaluating and screening salinity tolerance in crop plants vary depending on the level and duration of salt stress and the plant developmental stage. Plant growth responses to salinity vary with plant life cycle; critical stages sensitive to salinity are germination, seedling establishment and flowering. We have established a standard protocol to evaluate large rice germplasms for overall performance based on specific physiological traits for salt tolerance at seedling stage. This protocol will help in identifying germplasms which can perform better in the presence of different salinity treatments based on single trait and also combination of different physiological traits. The salt tolerant germplasm can be taken forward into developing better varieties by conventional breeding and exploring genes for salt tolerance.

  • PDF

Morphological Characteristics and Phylogenetic Analysis of Polygonatum Species Based on Chloroplast DNA Sequences (한국산 둥굴레속 식물의 형태적 특성 및 엽록체 DNA 염기서열을 이용한 유연관계 분석)

  • Kim, Jeong Hun;Seo, Jae Wan;Byeon, Ji Hui;Ahn, Young Sup;Cha, Seon Woo;Cho, Joon Hyeong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.6
    • /
    • pp.489-496
    • /
    • 2014
  • Polygonatum is a genus placed in the family Liliaceae, distributed throughout the Northern Hemisphere and 16 of the species are grown naturally in Korea. In oriental medicine, the rhizomes of Polygonatum have been used as two different medicines, Okjuk (Polygonati odorati Rhizoma) and Hwangjeong (Polygonati Rhizoma). However, it is difficult to identify the morphological and chemical differences between the medicinal groups and thus easy to confuse the one with the other. Therefore, a clear classification standard needs to be established so as to be able to discriminate between them. In the study, the morphological characteristics of the plants, Polygonatum spp., were examined. Then, the differences in SNPs among the DNA sequences of 7 of the Polygonatum spp. and 1 of the Disporum spp. were analyzed by DNA barcoding with rpoC1, rpoB2, matK, and psbA-trnH of the cpDNA region. In the results, three regions, rpoC1, rpoB2, and matK were useful for discriminating the species, P. stenophyllum and P. sibiricum. Furthermore, it was possible to discriminate the individual germplasm within the species by using the combination of the results obtained from rpoB2, rpoC1, and matK.

Enhancement of centelloside production from cultured plants of Centella asiatica by combination of thidiazuron and methyl jasmonate

  • Yoo, Nam-Hee;Kim, Ok-Tae;Kim, Jung-Bong;Kim, Sun-Hee;Kim, Young-Chang;Bang, Kyong-Hwan;Hyun, Dong-Yun;Cha, Seon-Woo;Kim, Min-Young;Hwang, Baik
    • Plant Biotechnology Reports
    • /
    • v.5 no.3
    • /
    • pp.283-287
    • /
    • 2011
  • In order to produce centellosides from whole plant cultures of Centella asiatica (L.) Urban, we evaluated the synergistic effects of thidiazuron (TDZ) and methyl jasmonate (MJ) on whole plant growth and centelloside production. After 4 weeks of treatment with 0.025 mg/L of TDZ coupled with 0.1 mM MJ, the production of made-cassoside and asiaticoside from whole plant cultures was estimated to be 2.40- and 2.44-fold, respectively, above that of MJ elicitation alone. When whole plants were treated with a growth regulator and an elicitor, the growth of whole plants, as compared to the controls, did not differ. Additionally, total phytosyterol content in the leaves of whole plants co-treated with MJ and TDZ was 1.08-fold greater than those of MJ alone. These results demonstrate that combined treatments not only stimulate the accumulation of centellosides in the leaves but also inhibit the reduction of phytosterol levels caused by MJ elicitation.

Prospect and Situation of Quality Improvement in Oilseed rape (유채 품질 평가 현황과 전망)

  • 장영석
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.175-185
    • /
    • 2002
  • Rapeseed(Brassica napus L.) is an important oil crop as a vegetable oil, concentrated feed and industrial materials. The name "canola" was registered in 1979 by the Western Canadian Oilseed Crushers Association to describe "double-low" varieties. Double low indicates that the processed oil contains less than 2% erucic-acid and the meal less than 3mg/g of glucosinolates. Today annual worldwide production of rapeseed is approximately 35 million tons on 24 million hectares. China accounts for 33% of the world production and the European Economic Community for nearly 32%. Canola ranks 3rd in production among the world's oilseed crops following soybeans, sunflowers, peanuts and cottonseed. The recent advances in genomics and in gene function studies has allowed us to understand the detailed genetic basis of many complex traits, such as flowering time, height, and disease resistance. The manipulation of seed oil content via transgene insertion has been one of the earliest successful applications of modern biotechnology in agriculture. For example, the first transgenic crop with a modified seed composition to be approved for unrestricted commercial cultivation in the US was a lauric oil, rape-seed, grown in 1995. There were also some significant early successes, mostly notably the achievement of 40% to 60% lauric acid content in rapeseed oil, which normally accumulates little or no lauric acid. The name "$\textrm{Laurical}^{TM}$" was registered in 1995 by Calgene Inc. Nevertheless, attempts to achieve high levels of other novel fatty acids in seed oils have met with much less success and there have been several reports that the presence of novel fatty acids in transgenic plants can sometimes lead to the induction of catabolic pathways which break down the novel fatty acid, i.e. the plant recognizes the "strange" fatty acid and, far from tolerating it, may even actively eliminate it from the seed oil. It is likely that, in the future, transgenic oil crops and newly domesticated oil crops will both be developed in order to provide the increased amount and diversity of oils which will be required for both edible and industrial use. It is important that we recognize that both approaches have both positive and negative points. It will be a combination of these two strategies that is most likely to supply the increasing demands for plant oils in the 21st century and beyond.ant oils in the 21st century and beyond.

Cultivar Discrimination of Korean and Chinese Boxthorn (Lycium chinense Mill. and Lycium barbarum L.) using SSR Markers (SSR 마커를 이용한 한국산과 중국산 구기자의 품종 판별)

  • Chung, Jong-Wook;Lee, Gi-An;Lee, Sok-Su;Bang, Kyong-Hwan;Park, Chung-Berm;Park, Yong-Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.6
    • /
    • pp.445-451
    • /
    • 2009
  • This study was undertaken to develop a technique of discrimination using SSR makers in boxthorn cultivars. Forty one boxthorn cultivars, which were collected from Korea and China, were evaluated by 10 SSR markers. Total of 61 alleles were detected, ranging from 3 to 13 with an average of 6.1 alleles per locus. The averages of gene diversity and PIC values were 0.482 and 0.428, with a range from 0.25 (GB-LCM-022 and GB-LCM-087) to 0.83 (GB-LCM-167) and from 0.24 (GB-LCM-022 and GB-LCM-087) to 0.81 (GB-LCM-167), respectively. Five markers out of 10 markers, GB-LCM-022, GB-LCM-075, GB-LCM-104, GB-LCM-167 and GB-LCM-217, were selected as key markers for discrimination in boxthorn cultivars. All of boxthorn cultivars were individually distinguished by the combination of five SSR markers.

Effect of Temperature, Soil Water Potential and Osmoconditioning on Germination and Seedling Elongation of Corn and Soybeans (온도ㆍ토양수분 포텐셜 및 삼투처리가 옥수수와 대두의 발아 및 묘신장에 미치는 영향)

  • Seong, Rak-Chun;Minor, Harry C.;Park, Keun-Yong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.1
    • /
    • pp.56-61
    • /
    • 1986
  • Germination and seedling elongation of maize (Dekalb XL 72B), and soybeans (Williams) were measured at two temperatures (15 and 35$^{\circ}C$), three soil water potentials (-1.50, -0.5, and -0.05 MPa), and four polyethy-lene glycol 8000 (PEG) levels (0, 20, 30, and 50 percent). Twenty conditioned seeds of each cultivar were treated with 0.2% thiram and planted 2 cm deep in sterilized Mexico silt loam soil which was subsequently compacted to a bulk density of 1.20 g/㎤. Seedling moisture content, dry weight, and length were measured for each treatment combination. Osmoconditioning with PEG showed little effect at high temperature or low soil water potential conditions. Soybeans had higher seedling moisture content than corn and both crops in-creased moisture uptake as soil water potential and temperature increased. Seedling length of corn was longer than soybeans at 35$^{\circ}C$ but shorter at 15$^{\circ}C$. Seedling dry weight of corn decreased at 35$^{\circ}C$ and that of soybeans decreased as soil water potential increased.

  • PDF

A New Rice Variety with Good Qualilty and Multiple Diseases Resistance "Sangok" (중생 고품질 복합내병성 신품종 벼 "상옥")

  • Park, No-Bong;Yang, Sae Jun;Kwak, Do-Yeon;Oh, Byeong-Geun;Song, You-Chun;Lee, Jeom-Sik;Yeo, Un-Sang;Ha, Woon-Goo;Yi, Gi-Hwan;Chang, Jae-Ki;Lim, Sang-Jong;Nam, Min-Hee;Lee, Jong-Hee;Keun, Oh-Kyeong;Park, Dong-Soo;Hwang, Heung-Gu;Kim, Ho-Yeong;Kim, Soon-Chul
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.515-519
    • /
    • 2009
  • "Sangok", is a new japonica rice variety (Oryza sativa L.), which is a midium maturing ecotype developed by the rice breeding team of National Yeongnam Agricultural Experiment Station (NYAES) in 2003. This variety was derived from the cross of Milyang 101/YR8697Acp97 (in 1988/1989 winter) and selected by combination of the bulk and pedigree breeding. The pedigree of Sangokbyeo, designated as Milyang 182 in 2000, was YR12950-B-B-B-19-2-4-2-2. It has about 79cm stature in culm length and is medium maturing. This variety is resistant to bacterial blight ($K_1$, $K_2$, and $K_3$), stripe virus and moderately resistant to leaf blast disease. Milled rice kernels of "Sangok" is translucent, clear in chalkness and good at eating quality in the panel test. The yield potential of "Sangok" in milled rice is about 5.16MT/ha at ordinary fertilizer level of local adaptability test. This cultivar would be adaptable to the southern plain of Korea below the Chungnam province by latitude from ordinary transplanting to transplanting after barley harvest.

Comparative Analysis on the Biomass Production between Machine-Transplanted and Water-Broadcast Seeded Silage Rice in the Central Plain Area of Korea (중부 평야지에서 사료용 벼 기계이앙과 담수산파 재배의 건물 생산성 비교 분석)

  • Yang, Woonho;Park, Jeong-Hwa;Kang, Shingu;Kim, Sukjin;Choi, Jong-Seo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.3
    • /
    • pp.186-195
    • /
    • 2018
  • A field study was conducted over a 3-year period from 2014 to 2016 in the central plain area, Suwon, Korea, 1) to compare the biomass production between machine-transplanted and water-broadcast seeded silage rice and 2) to elucidate the growth factors that affect the difference in biomass production between the two cultivation practices. The heading date for the water-broadcast seeded silage rice was September 11-18, which was delayed by 11-17 days when compared to that for the machine-transplanted silage rice. On average, water-broadcast seeded silage rice had a shorter plant height, more panicles per area, and a greater biomass production because of the increased straw dry weight. However, the difference in dry weight of each plant organ between the two cultivation practices exhibited yearly variation. When the data were pooled across experimental years, cultivation practices, and varieties, biomass production was highly positively correlated with straw dry weight but not with panicle dry weight. When the ratio of water-broadcast seeding to machine-transplanting was analyzed, total dry weight and straw dry weight were positively associated with each other, whereas no relationship was found between total dry weight and panicle dry weight. Despite that water-broadcast seeded silage rice produced more panicles per area than machine-transplanted silage rice, the two cultivation practices had a similar dry weight per culm. Therefore, we conclude that the silage rice from the water-broadcast seeding, compared to the machine-transplanting, produced more biomass because of the combination of the increased panicle number per area and a similar dry weight per culm. These results suggest that silage rice could be produced through water-broadcast seeding to increase biomass production with low labor and cost input.