• Title/Summary/Keyword: Crop Rotation

Search Result 140, Processing Time 0.029 seconds

Searching for Rotationable Vegetables for Paratylenchus projectus in Lettuce Greenhouse (해바라기침선충(Paratylenchus projectus) 피해 경감을 위한 윤작작물 탐색)

  • Kwon, Giyoon;Seo, Jongmin;Park, Sohee;Kang, Heonil;Park, Namsook;Choi, Insoo
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.272-278
    • /
    • 2020
  • The severe lettuce damage caused by Paratylenchus projectus was first reported in 2019 in Korea. To find high-value rotation crops for the control of P. projectus, nine vegetables, Brassica juncea (leaf mustard), B. rapa subsp. nipposinica (kyona), B. oleracea var. italica (broccoli), B. rapa subsp. chinensis (bok choy), B. oleracea var. viridis (kale), B. oleracea var. gongylodes (kohlrabi), Cichorium endivia (endive), C. intybus (chicory), Ipomoea aquatica (morning glory) were planted in d-10-cm clay pots in greenhouse. The growth of vegetables was compared between inoculated with 3,000 P. projectus per 100 ㎤ of soil and non-inoculated. Treatments were replicated 10 times. After 100 days, the reduction of fresh top weight was 30.4% in C. intybus, 35.1% in I. aquatica, 36.9% in B. oleracea var. acephala, 40.5% in C. endivia, 42.1% in B. rapa, 47.5% in B. rapa subsp. nipposinica, 50.4% in B. oleracea var. gonglodes, 56.3% in B. oleracea var. italica, and 66.0% in B. juncea. Nematode multiplication rates (Pf/Pi) were lower in I. aquatica (0.64) and C. endivia (1.1), but higher in B. oleracea var. gongylodes (2.54). Considering these results, I. aquatica is suitable for the rotation crop with lettuce until better rotation crops developed.

Analysis of power requirement of the underground crop harvester attached on agricultural tractor during traction operation (트랙터 부착형 땅속작물 수확기의 견인 작업시 소요동력 분석)

  • Jang, Jeong-Hoon;Kim, Wan-Soo;Choi, Chang-Hyeon;Park, Seong-Un;Kim, Yong-Joo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.2
    • /
    • pp.150-155
    • /
    • 2018
  • In Korea, the mechanization ratio of field farming is about 58.3%. Especially, mechanization ratio of harvest operation is 10% or less. So, it is required to improve the mechanization ratio of harvest operation to analyze the power requirement analysis of agricultural tractor. The purpose of this study is to analyze power requirement of the underground crop harvester attached on agricultural tractor for traction operation. First, a power measurement system was developed and installed in 45 kW agricultural tractor. Second, field experiments were conducted at two driving speed levels (1.41, 2.17 km/h), and axle torque and rotation speed were analyzed. At 1.41km/h driving speed, the average power requirement of driving axle is 3.13 kW, respectively, at 2.17km/h driving speed, the average power requirement of driving axle is each 4.20 kW. In addition, the field tests show that as the driving speed increases by 53%, the power requirement of the underground crop harvester attached on agricultural tractor increases by 34%. Therefore, it indicated that the power requirement of agricultural tractor was affected by the driving speed.

Influence of Harvest Time, Drying Period and Threshing Force on Mechanical Damage and Germinability of Rye Grains (호밀의 수확시기, 건조일수 및 탈곡기 회전속도가 탈곡종실의 손상립률과 발아율에 미치는 영향)

  • 김석동;하용웅;이성희
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.4
    • /
    • pp.477-482
    • /
    • 1986
  • This trial was carried out to set up a proper drum speed of thresher to minimize the mechanical damage from threshing and thereby to obtain rye seeds possessing higher qualities for seeds. Rye plants were harvested at from 40 to 60 days after heading (DAH) with 5 days intervals and spread out on the field for 0, I, 2, 3 days for drying, respectively. After drying the plants were subjected to threshing at seven steps of drum speed from 400 to 1000 rotation per minute (RPM) of a thresher, drum diam. 18.6cm, teeth length 6cm. At 500 to 600 RPM and from the plants harvested at 55DAH with drying for one or two days, the seeds possessed low grain damage, high germinability over 90%, and field emergence rate over 80%.

  • PDF

Controller for Single Line Tracking Autonomous Guidance Vehicle Using Machine Vision

  • Shin, Beom-Soo;Choi, Young-Dae;Ying, Yibin
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.47-53
    • /
    • 2005
  • AMachine vision is a promising tool for the autonomous guidance of farm machinery. Conventional CCD camera for the machine vision needs a desktop PC to install a frame grabber, however, a web camera is ready to use when plugged in the USB port. A web camera with a notebook PC can replace existing camera system. Autonomous steering control system of this research was intended to be used for combine harvester. If the web camera can recognize cut/uncut edge of crop, which will be the reference for steering control, then the position of the machine can be determined in terms of lateral offset and heading angle. In this research, a white line was used as a cut/uncut edge of crop for steering control. Image processing algorithm including capturing image in the web camera was developed to determine the desired travel path. An experimental vehicle was constructed to evaluate the system performance. Since the vehicle adopted differential drive steering mechanism, it is steered by the difference of rotation speed between left and right wheels. According to the position of vehicle, the steering algorithm was developed as well. Evaluation tests showed that the experimental vehicle could travel within an RMS error of 0.8cm along the desired path at the ground speed of $9\sim41cm/s$. Even when the vehicle started with initial offsets or tilted heading angle, it could move quickly to track the desired path after traveling $1.52\sim3.5m$. For turning section, i.e., the curved path with curvature of 3 m, the vehicle completed its turning securely.

  • PDF

Designing a Subsurface Drainage System: A Trade-Off Between Environmental Sustainability and Agricultural Productivity (유공암거 배수 구성: 환경지속가능성과 농업생산성 사이의 균형)

  • Kim, Kyung-Min;Jeong, Wu-Seong;Bhattarai, Rabin;Jeong, Han-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.3
    • /
    • pp.53-61
    • /
    • 2022
  • This study evaluated the impacts of subsurface drainage design, i.e., spacing and depth, on agricultural productivity and environmental sustainability in two tile-drained fields (Sites A and E) under a corn-soybean rotation in the Midwestern United States. A calibrated and validated Root Zone Water Quality Model (RZWQM) was used to simulate Nitrate-N (nitrogen) losses to tile drainage and crop yields of 30 tile spacing and depth scenarios over 24 years (1992-2015). Our results presented that the narrower and deeper the tile drains are placed, the greater corn yield and Nitrate-N losses, indicating that the subsurface drainage design may cause a trade-off between agricultural productivity and environmental sustainability. The simulation results also presented that up to about 255.7% and 628.0% increase in Nitrate-N losses in Sites A and E, respectively, far outweigh the rate of increase in corn yield up to about 1.1% and 1.6% from the adjustment of tile spacing and depth. Meanwhile, the crop yield and Nitrate-N losses according to the tile configuration differed depending on the field, and the soybean yield presented inconsistent simulation results, unlike the corn yield, which together demonstrate the heterogeneous characteristic of agro-environmental systems to a subsurface drainage practice. This study demonstrates the applicability of agricultural systems models in exploring agro-environmental responses to subsurface drainage practices, which can help guide the introduction and installation of tile systems into farmlands, e.g., orchards and paddy fields, in our country.

Effects of Hulled and Hulless Barley Isogenic Lines on Germination and Emergence Rate (보리 피과성이 발아 및 출아율에 미치는 영향)

  • Lee, Eun-Sup;Jeong, Duk-Hyun;Chun, Jong-Eun;Nam, Jung-Hyun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.1
    • /
    • pp.78-83
    • /
    • 1986
  • To obtain the information about the reasons why hulless barley varieties generally have poor germination and emergence rate in the field, hulled and hulless isogenic lines were bred and used. The germination rates of hulless isogenic lines were 4-6 percent lower than those of hulled lines at artificial precipitation treatment, and seriously dropped down at 5 day precipitation treatment. As the thresher rotation speeds up 600 to 1,000 rpm, the differences of germination rate were 10 percent in hulled, but 22 percent in hulless lines. Also emergence rates of hulless lines became seriously low at deep seeding. The emergence rates of hulless isogenic lines became low in the order of deep seeding, high speed thresher, and rain-fall. These results suggest that barley breeders especially for hulless varieties should plan their breeding programs to improve the emergence rate or seedling vigour in the field.

  • PDF

Occurrence of Faba Bean Diseases and Determinants of Faba Bean Gall (Physoderma sp.) Epidemics in Ethiopia

  • Tekalign Zeleke;Bereket Ali;Asenakech Tekalign;Gudisa Hailu;M. J. Barbetti;Alemayehu Ayele;Tajudin Aliyi;Alemu Ayele;Abadi Kahsay;Belachew Tiruneh;Fekadu Tewolde
    • The Plant Pathology Journal
    • /
    • v.39 no.4
    • /
    • pp.335-350
    • /
    • 2023
  • Physoderma fungal species cause faba bean gall (FBG) which devastates faba bean (Vicia faba L.) in the Ethiopian highlands. In three regions (Amahara, Oromia, and Tigray), the relative importance, distribution, intensity, and association with factors affecting FBG damage were assessed for the 2019 (283 fields) and 2020 (716 fields) main cropping seasons. A logistic regression model was used to associate biophysical factors with FBG incidence and severity. Amhara region has the highest prevalence of FBG (95.7%), followed by Tigray (83.3%), and the Oromia region (54%). Maximum FBG incidence (78.1%) and severity (32.8%) were recorded from Amhara and Tigray areas, respectively. The chocolate spot was most prevalent in West Shewa, Finfinne Special Zone, and North Shewa of the Oromia region. Ascochyta blight was found prevalent in North Shewa, West Shewa, Southwest Shewa of Oromia, and the South Gondar of Amhara. Faba bean rust was detected in all zones except for the South Gonder and North Shewa, and root rot disease was detected in all zones except South Gonder, South Wollo, and North Shewa of Amahara. Crop growth stage, cropping system, altitude, weed density, and fungicide, were all found to affect the incidence and severity of the FBG. Podding and maturity stage, mono-cropping, altitude (>2,400), high weed density, and non-fungicide were found associated with increased disease intensities. However, crop rotation, low weed infestation, and fungicide usage were identified as potential management options to reduce FBG disease.

Biocontrol of root diseases of fruit trees with fungal viruses

  • Matsumoto, Naoyuki;Nakamura, Hitoshi;Ikeda, Kenichi;Arakawa, Masao;Uetake, Yukari
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.19-20
    • /
    • 2003
  • Helicobasidium mompa Tanaka and Resellinia necatrix Prillieux cause violet root rot and white root rot of various crops, respectively. Intensive cultural practices, such as the use of dwarf stock, glasshouse cultivation, etc., predispose plants to the diseases. The diseases can be controlled only by biennial drench of 50100L of chemicals for each tree. Biocontrol with soil microorganisms proved ineffective under field conditions. Long-term control may be hampered by the perennial growth of hosts and by the difficulty in the establishment of antagonists in soil. Crop rotation or soil amendment is not applicable, either. Fungal viruses with dsRNA genome (Buck 1986) are promising against root diseases of fruit trees since they exist within the cytoplasm of fungal hyphae and need no effort to help them persist in the field. The viruses are considered to spread though the network of fungal mycelia in the soil once they enter the fungal cytoplasm. Here, we present preliminary results from a project to control the root diseases of fruit trees with dsRNA.(중략)

  • PDF

Wheat Blast: A New Fungal Inhabitant to Bangladesh Threatening World Wheat Production

  • Sadat, Md. Abu;Choi, Jaehyuk
    • The Plant Pathology Journal
    • /
    • v.33 no.2
    • /
    • pp.103-108
    • /
    • 2017
  • World wheat production is now under threat due to the wheat blast outbreak in Bangladesh in early March 2016. This is a new disease in this area, indicating the higher possibility of this pathogen spreading throughout the Asia, the world's largest wheat producing area. Occurrence of this disease caused ~3.5% reduction of the total wheat fields in Bangladesh. Its economic effect on the Bangladesh wheat market was little because wheat contributes to 3% of total cereal consumption, among which ~70% have been imported from other countries. However, as a long-term perspective, much greater losses will occur once this disease spreads to other major wheat producing areas of Bangladesh, India, and Pakistan due to the existing favorable condition for the blast pathogen. The wheat blast pathogen belongs to the Magnaporthe oryzae species complex causing blast disease on multiple hosts in the Poaceae family. Phylogenetic analysis revealed that the Bangladesh outbreak strains and the Brazil outbreak strains were the same phylogenetic lineage, suggesting that they might be migrated from Brazil to Bangladesh during the seed import. To protect wheat production of Bangladesh and its neighbors, several measures including rigorous testing of seed health, use of chemicals, crop rotation, reinforcement of quarantine procedures, and increased field monitoring should be implemented. Development of blast resistant wheat varieties should be a long-term solution and combination of different methods with partial resistant lines may suppress this disease for some time.

A study on the economic background and management method in organic farming (유기농업의 경제적 배경과 경영방식에 관한 고찰)

  • Kim, Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.3 no.1
    • /
    • pp.43-70
    • /
    • 1994
  • Presently the concept of organic farming has not simply technical categories such as no agricul-tural chemicals and no chemical fertilizer but can be also extended to the categories of economics, food nutrition, environmental and philosophical aspects. Accordingly, in order to understand cor-rectly organic farming, it is necessary to look into the concept including these extended aspects. So the production and consumption activities of organic farming products are largely based on the fundamental philosophy of organic farming. That is, all the life that is included in an ecosystem has to live in symbiosis, which is based on life circulation principle. And if this circultaion system is destroyed, human life may be threatended. Farmers who produce organic farming prducts(organic farmer) receive price higher than general farmers. This study shows the gap of 46.9% in two products. Also, since the price of organic farming products is fluctuated less relatively, Organic farming pruducts can be competed against imported agricultural products in terms of food safety. And organic farming should be managed by crop rotation and composite farm management upon which the principle of material circulation is worked. This composite management is devided into 2 classes, which are individually livestock-have-composite management and regional composite management. These management method means that organic materials are crucial to maintain the structure and fertility and these organic materials are easily obtained from animal as by-products.

  • PDF