• Title/Summary/Keyword: Crop Residues

Search Result 248, Processing Time 0.03 seconds

Evaluation of Soil Organic Carbon of Upland Soil According to Fertilization and Agricultural Management Using DNDC Model (DNDC 모형을 이용한 시비와 영농관리에 따른 밭포장의 토양유기탄소 변동 평가)

  • Lee, Kyoungsook;Yoon, Kwangsik;Choi, Dongho;Jung, Jaewoon;Choi, Woojung;Lim, Sangsun
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • To mitigate the impacts of climate change on agricultural ecosystems, development of agricultural management for enhanced soil carbon sequestration is required. In this study, the effects of fertilizer types (chemical fertilizer and manure compost), cropping systems, and crop residue management on SOC(Soil Organic Carbon) sequestration were investigated. Summer corn and winter barley were cultivated on experimental plots under natural rainfall conditions for two years with chemical fertilizer and manure compost. Soil samples were collected conducted and analyzed for SOC for soil. To estimate long-term variation patterns of SOC, DNDC was run with the experimental data and the weather input parameters from 1981 to 2010. DNDC simulation demonstrated SOC reduction by chemical fertilizer treatment unless plant residues are returned; whereas compost treatments increased SOC under the same conditions and SOC increment was proportional to compost application rate. In addition, SOC further increased under corn-barley cropping system over single corn cropping due to more compost application. Regardless of nutrient input type, residue return increased SOC; however, the magnitude of SOC increase by residue return was lower than by compost application.

An Extrapolation from Crop Classifications Based on Pesticide Residues Trial Data within Vegetables in Minor Crops (소면적 재배작물의 농약 잔류성 시험 후 작물 그룹화를 통한 외삽적용)

  • Park, Jong-Hyouk;Mamun, M.I.R.;El-Aty, A.M.Abd;Choi, Jeong-Heui;Im, Geon-Jae;Oh, Chang-Hwan;Shim, Jae-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.1
    • /
    • pp.28-38
    • /
    • 2009
  • An extrapolation of residue data of seven commonly used pesticides namely bifenthrin, chlorothalonil, cypermethrin, diazinon, fenvalerate, phenthoate and procymidone on a total of 22 minor crops has been carried out in an experimental field trial. The pesticides were applied to 11 leafy-, 5 root- and 6 stem-crops grown in the experimental green-house and the crops and plants were randomly collected at 1, 3, 5, 7 days after application. The average recoveries of applied pesticides were ranged from 72.0 to 117.0% in leafy crops, from 81.3 to 105.0% in stem crops and from 70.1 to 108.1% in the root-crops. Limits of detection (LODs) were 0.005-0.1 mg/kg in the leafy crops and 0.001-0.005 mg/kg in both the stem & root crops. Based on the results of residual dissipation pattern and their morphology, all crops were classified into high and low residual groups. The results showed that it might be possible to extrapolate residual data of stem-crops to root-crops within the same group. Crops that have currently no registered pesticide for use, would be possible to use the pesticides which are already been registered for the similar crops.

Establishment of Analytical Method for Pymetrozine Residues in Crops Using Liquid-Liquid Extraction(LLE) (액-액 분배법을 활용한 작물 중 pymetrozine의 잔류분석법 확립)

  • Yoon, Ji-Young;Moon, Hye-Ree;Park, Jae-Hun;Han, Ye-Hoon;Lee, Kyu-Seung
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.2
    • /
    • pp.107-116
    • /
    • 2013
  • Polar pesticides like pymetrozine (log $P_{ow}$: -0.18) are known to be difficult to analyze. The analytical method of pymetrozine using hydromatrix included in the official method of KFDA was uncommon and provided ambiguous evidence to confirm both the identity and the quantity. Therefore, precise single residue analytical method was developed in representative crops for using liquid-liquid extraction (LLE). The pymetrozine residue was extracted with methanol from 11 representative crops which comprised apple, blueberry, broccoli, cabbage, cherry, crown daisy, hulled rice, Korean cabbage, potato, rice and watermelon. The extract was purified serially by liquid-liquid extraction (LLE) and silica solid phase extraction (SPE). For rice and hulled rice samples, n-hexane partition was additionally adopted to remove nonpolar interferences, mainly lipids. The residue levels were analyzed by HPLC with DAD, using $C_8$ column. LOQ (limit of quantitation) of pymetroizinie was 1 ng (S/N > 10) and MQL (method quantitation limit) was 0.01 mg/kg. Mean recoveries from 11 crop samples fortified at three levels (MQL, 10 ${\times}$ MQL and 50 ${\times}$ MQL) in triplicate were in the range of 83.1~98.5% with coefficients of variation (CV) of less than 10%, regardless of sample type, which satisfies the criteria of KFDA. The method established in this study could be applied to most of crops as an official and general method for analysis of pymetrozine residue.

Effect of Straw Used as a Medium of Trickling Filter with Livestock Wastewater on the Growth of Bunching Lettuce(Lactuca sativa L., var. crispa) and Soil Chemical Properties (축산폐수(畜産廢水) 살수여상충전재(撒水濾床充塡材)로 사용(使用)된 짚이 상추(Lactuca sativa L., var. crispa)와 토양화학성(土壤化學性)에 미치는 영향(影響))

  • Kim, Jeong-Je;Yang, Jae-E;Shin, Young-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.371-377
    • /
    • 1996
  • Utilization of crop residues was investigated in search of ecologically desirable treatment of wastewater from small-scale swine farm. Instead of common materials rice stray was used as a support medium of tricking filter with the farm, wastewater treatment. The treated rice stave medium was dried, crushed, and directly added to soil, where bunching lettuce seedlings were grown under greenhouse conditions. The development of bunching lettuce was significantly enhanced by the application of the straw medium up to 2100 kg/10a. Little changes in soil chemical properties were observed at harvesttime, except the pH which was raised by more than 1 unit, and the content of Mg which was depleted presumably by the uptake of the plant.

  • PDF

Molecular Modification of Perilla Lipid Composition

  • Hwang, Young-Soo;Kim, Kyung-Hwan;Hwang, Seon-Kap;Lee, Sun-Hwa;Lee, Seong-Kon;Kim, Jung-Bong;Park, Sang-Bong;Tom Okita;Kim, Donghern
    • Journal of Plant Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.20-30
    • /
    • 1999
  • In order to modify lipid production of Perilla qualitatively as well as quantitatively by genetic engineering, genes involved in carbon metabolism were isolated and characterized. These include acyl-ACP thioesterases from Perilla frutescens and Iris sp., four different $\beta$-ketoacyl- ACP synthases from Perilla frutescens, and two $\Delta$15 a-cyl-ACP desaturases(Pffad7, pffad3). Δ15 acyl-ACP desa turase (Δ15-DES) is responsible for the conversion of linoleic acid (18:2) to $\alpha$-linolenic acid (ALA, 18:3). pffad 3 encodes Δ15 acyl-desaturase which is localized in ER membrane. On the other hand, Pffad7 encodes a 50 kD plastid protein (438 residues), which showed highest sequence similarity to Sesamum indicum fad7 protein. Northern blot analysis revealed that the Pffad7 is highly expressed in leaves but not in roots and seeds. And Pffad3 is expressed throughout the seed developmental stage except very early and fully mature stage. We constructed Pffad7 gene under 355 promoter and Pffad3 gene under seed specific vicillin promoter. Using Pffad7 construct, Perilla, an oil seed crop in Korea, was transformed by Agrobacterium leaf disc method. $\alpha$-linolenic acid contents increased in leaves but decreased in seeds of transgenic Perilla. Currently, we are transforming Perilla with Pffad3 construct to change Perilla seed oil composition. We isolated three ADP-glucose pyrophosphorylase (AGP) genes from Perilla immature seed specific cDNA library. Nucleotide sequence analysis showed that two of three AGP (Psagpl, Psagp2) genes encode AGP small subunit polypeptides and the remaining (Plagp) encodes an AGP large subunit. PSAGPs, AGP small subunit peptide, form active heterotetramers with potato AGP large subunit in E. coli expressing plant AGP genes.

  • PDF

Two-step High Temperature Pretreatment Process for Bioethanol Production from Rape Stems (유채대의 이단 고온 처리에 의한 알콜 발효용 당화물 생산)

  • Han, Jae-Gun;Oh, Sung-Ho;Jeong, Myoung-Hoon;Kim, Seung-Seop;Seo, Hyeon-Beom;Jeong, Kyung-Hwan;Jang, Young-Seok;Kim, Il-Cheol;Lee, Hyeon-Yong
    • KSBB Journal
    • /
    • v.24 no.5
    • /
    • pp.489-494
    • /
    • 2009
  • Two-step pretreatment process was investigated to efficiently hydrolyzed rape stems for obtaining fermentable sugars. The process was consisted of two consecutive steps as $200^{\circ}C$ and 15 MPa and $374^{\circ}C$ and 24 MPa with the flow rate of 5 mL/min. Under this condition, 5.5 (g/L) of glucose and 25.6 (g/L) of xylose were obtained from rape stems, showing 18% of glucose yield based on 25% cellulose in the rape stems. It was also found that this process could generate less amounts of toxic residues, such as HMF (Hydroxy- Methyl-Furfural) and other fulfural components during hydrolysis process. It could reaction maintain relatively high ethanol production yield as 90% of theoretical conversion yield from glucose. Therefore, this pretreatment process could be applied to hydrolyze other cellulosic and marine resources such as woods, stem and algae for bioethanol production.

Enhanced fungal resistance in Arabidopsis expressing wild rice PR-3 (OgChitIVa) encoding chitinase class IV

  • Pak, Jung-Hun;Chung, Eun-Sook;Shin, Sang-Hyun;Jeon, Eun-Hee;Kim, Mi-Jin;Lee, Hye-Young;Jeung, Ji-Ung;Hyung, Nam-In;Lee, Jai-Heon;Chung, Young-Soo
    • Plant Biotechnology Reports
    • /
    • v.3 no.2
    • /
    • pp.147-155
    • /
    • 2009
  • Oryza grandiglumis Chitinase IVa (OgChitIVa) cDNA encoding a class IV chitinase was cloned from wild rice (Oryza grandiglumis). OgChitIVa cDNA contains an open reading frame of 867 nucleotides encoding 288 amino acid residues with a predicted molecular weight of 30.4 kDa and isoelectric point of 8.48. Deduced amino acid sequences of OgChitIVa include the signal peptide and chitin-binding domain in the N-terminal domain and conserved catalytic domain. OgChitIVa showed significant similarity at the amino acid level with related monocotyledonous rice and maize chitinase, but low similarity with dicotyledoneous chitinase. Southern blot analysis showed that OgChitIVa genes are present as two copies in the wild rice genome. It was shown that RNA expression of OgChitIVa was induced by defense/stress signaling chemicals, such as jasmonic acid, salicylic acid, and ethephon or cantharidin and endothall or wounding, and yeast extract. It was demonstrated that overexpression of OgChitIVa in Arabidopsis resulted in mild resistance against the fungal pathogen, Botrytis cinerea, by lowering disease rate and necrosis size. RT-PCR analysis showed that PR-1 and PR-2 RNA expression was induced in the transgenic lines. Here, we suggest that a novel OgChitIVa gene may play a role in signal transduction process in defense response against B. cinerea in plants.

Assessment on Nitrous oxide (N2O) Emissions of Korea Agricultural Soils in 2009 (2009년 우리나라 농경지 토양에서의 N2O 배출량 평가)

  • Jeong, Hyun-Cheol;Kim, Gun-Yeob;Lee, Deog-Bae;Shim, Kyo-Moon;Lee, Seul-Bi;Kang, Kee-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1207-1213
    • /
    • 2011
  • This study was conducted to assess $N_2O$ emissions in agricultural soils of Korea. According to 1996 and 2006 IPCC (Intergovernmental Panel on Climate Change) methodology, $N_2O$ emission was calculated the sum of direct emission ($N_2O_{DIRECT}$) and indirect emission ($N_2O_{INDIRECT}$). To calculate $N_2O$ emissions, emission factor was used default of IPCC and activity data was used the food, agricultural, forestry and fisheries statistical yearbook of MIFAFF (Ministry for Food, Agriculture, Forestry and Fisheries). It was emitted 8,608 $N_2O$ Mg resulted from direct emission by application of chemical fertilizer and animal manure, input in n-fixation crops and input of crop residues and emissions converted $N_2O$ into $CO_2$ equivalent was 2,668 $CO_2$-eq Gg. Indirect emission as $N_2O_{(G)}$ (atmospheric deposition of $NH_3$ and $NO_X$) and $N_2O_{(L)}$ (leaching and runoffs) were 4,567 and 6,013 $N_2O$ Mg and emissions converted $N_2O$ into $CO_2$ equivalent were 1,416 and 1,864 $CO_2$-eq Gg, respectively. Total $N_2O$ emission in Korea agricultural soil in 2009 was 5,948 $CO_2$-eq Gg.

Soil Carbon Storage in Upland Soils by Biochar Application in East Asia: Review and Data Analysis (바이오차를 이용한 밭 토양 탄소 저장: 동아시아 지역 연구 리뷰 및 데이터 분석)

  • Lee, Sun-Il;Kang, Seong-Soo;Choi, Eun-Jung;Gwon, Hyo-Suk;Lee, Hyoung-Seok;Lee, Jong-Mun;Lim, Sang-Sun;Choi, Woo-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.3
    • /
    • pp.219-230
    • /
    • 2021
  • BACKGROUND: Biochar is a solid material converted from agricultural biomass such as crop residues and pruning branch through pyrolysis under limited oxygen supply. Biochar consists of non-degradable carbon (C) double bonds and aromatic ring that are not readily broken down by microbial degradation in the soils. Due to the recalcitrancy of C in biochar, biochar application to the soils is of help in enhancing soil carbon sequestration in arable lands that might be a strategy of agricultural sector to mitigate climate change. METHODS AND RESULTS: Data were collected from studies on the effect of biochar application on soil C content conducted in East Asian countries including China, Japan and Korea under different experimental conditions (incubation, column, pot, and field). The magnitude of soil C storage was positively correlated (p < 0.001) with biochar application rate under field conditions, reflecting accumulation of recalcitrant black C in the biochar. However, The changes in soil C contents per C input from biochar (% per t/ha) were 6.80 in field condition, and 12.58 in laboratory condition. The magnitude of increment of soil C was lower in field than in laboratory conditions due to potential loss of C through weathering of biochar under field conditions. Biochar production condition also affected soil C increment; more C increment was found with biochar produced at a high temperature (over 450℃). CONCLUSION: This review suggests that biochar application is a potential measures of C sequestration in agricultural soils. However, as the increment of soil C biochar was affected by biochar types, further studies are necessary to find better biochar types for enhanced soil C storage.

Evaluation of Residual Pesticides in Dried Chili Peppers and Chili Powders Using LC-MS/MS (LC-MS/MS를 이용한 유통 건고추와 고춧가루의 잔류농약 평가)

  • Jang, Mi-Ra;Kim, Eun-Hee;Shin, Jae-Min;Park, Young-Hye;Park, Hae-Won;Kim, Jin-Kyoung;Hong, Mi-Sun;Yu, In-Sil;Shin, Young-Seung
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.1
    • /
    • pp.9-16
    • /
    • 2021
  • The monitoring of residual pesticides in dried chili peppers and chili powders, which are circulated in Seoul from 2018 to 2019, was conducted for safety evaluation. As a result of analyzing for 71 kinds of pesticide residues in 101 cases of samples, pesticides were detected in 87 samples; however, no samples exceeded the MRLs (Maximum Residue Limits). Detection rates of pesticides in dried chili peppers and chili powders were 73.3% and 91.5%, respectively. The detection rate of residual pesticides in chili powders was a little higher than that in dried chili peppers. Twelve types of pesticides were detected, however, those pesticides were acceptable to use on peppers, according to the Crop Protection Guidelines. The most frequently detected pesticide was pyraclostrobin followed by flubendiamide, azoxystrobin, and chlorantraniliprole. The risk for detected pesticides was estimated as the ratio of ADI (Acceptable Daily Intake) to food intake rate. The ADI value resulting by intake of dried chili peppers and chili powders was in the range of 5.66E-05 to 3.34E-02, which was within a safe level.