• 제목/요약/키워드: Crop Land

검색결과 777건 처리시간 0.028초

새만금 간척지 토양 염농도의 경시적 변동 특성: 10년 조사 결과 (Annual Changes of Soil Salinity of the Saemangeum Reclaimed Tide Land during Last 10 Years)

  • 류진희;오양열;이수환;이경도;김영주
    • 한국환경농학회지
    • /
    • 제39권4호
    • /
    • pp.327-333
    • /
    • 2020
  • BACKGROUND: Through Saemangeum development project, 283 ㎢ of new land is planned to be created and the reclaimed land of 89.7 ㎢ will be used as agricultural land. Therefore, monitoring of soil salinity is required to evaluate the suitability of the land for agricultural purposes. METHODS AND RESULTS: We investigated changes of soil physico-chemical properties, including electric conductivity (EC), of the Saemangeum reclaimed tidal land (1,195 ha) from 2008 to 2017 to obtain basic data for suitable soil management of the Saemangeum reclaimed tidal land. Soil samples were collected from the sites spaced 200 meters apart from each other. Soil analysis results showed that average soil EC was 14.5 dS m-1 in 2008, and decreased to 6.5 dS m-1 in 2014 and to 0.9 dS m-1 in 2017. Accordingly, the soil area below soil EC 4.7 dS m-1 (accepted as farmable soil salinity) increased; 25.0% in 2008, 54.3% in 2014, and 96.9% in 2017. The annual decrease in soil EC was described as y = -1.5756x + 14.6 (R2= 0.96), where y = soil EC and x = elapsed years since 2008. CONCLUSION: The soil salinity have decreased to a level for cultivation of most edible crops. However, since the soil chemical properties, such as soil organic matter were inadequate for the cultivation of crops, it was suggested that management of soil fertility would be important for efficient agricultural use of Saemangeum reclaimed land.

Characteristics of the soil loss and soil salinity of upland soil in saemangeum reclaimed land in western South Korea

  • Kim, Young Joo;Lee, Su Hwan;Ryu, Jin Hee;Oh, Yang Yeol;Lee, Jeong Tae
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.316-316
    • /
    • 2017
  • The objective of this study is to estimate quantitatively soil salinity and soil loss at upland soils in agriculture land region in Saemangeum reclaimed land on the south Korea coasts. Soil loss and soil salinity are the most critical problem at reclaimed tidal saline soil in Korea. The several thematic maps of research area such as land cover map, topographic and soil maps, together with tabular precipitation data used for soil erosion and soil salinity calculation. Meteorological data were measured directly as air temperature, wind speed, solar radiation, and precipitation. The experiment was conducted 2% sloped lysimeter ($5.0m{\times}20.0m$) with 14 treatments and it were separated by low salinity division (LSD) and high salinity division (HSD) install. The cation content in ground water increased during time course, but in the case of land surface water the content was variable, and $K^+$ was lower than that of $Na^+$ and $Mg^{2+}$. At the LSD under rainproof condition, the salinity was directly proportional to soil water content, but at the HSD the tendency was no reversed. In condition of rainproof, the amount of soil salinity was higher at the HSD than at the LSD. Positive correlation was obtained between the soil water content and available phosphorous content at the rainfall division, but there was no significance at the surface soil of the rainproof division. Sodium adsorption ratio and anion contents in soil were repressed in the order of vinyl-mulching > non-mulching > bare field. According to the result of analyzing soil loss, soil loss occurred in a vinyl-mulching, a non-mulching and a bare field in size order, and also approximately 11.2 ton/ha soil loss happened on the reclaimed land area. The average soil loss amount by the unit area takes place in a non-mulching and bare field a lot. Our results indicate that soluble salt control and soil erosion are critical at reclaimed tidal saline soil and the results can provide some useful information for deciding management plans to reduce soil loss and salt damage for stable crop production and diverse utilization or cultivation could be one of the management options to alleviate salt damage at reclaimed tidal saline soil in Korea.

  • PDF

간척지토양에서 하수슬러지 고화물 처리가 에너지작물의 생육에 미치는 영향 (Effects of Application of Solidified Sewage Sludge on the Growth of Bioenergy Crops in Reclaimed Land)

  • 안기홍;이선일;구본철;최용환;문윤호;차영록;박선태;김중곤;김병철;김상평
    • 한국작물학회지
    • /
    • 제56권4호
    • /
    • pp.299-307
    • /
    • 2011
  • 본 연구는 수도권 매립예정 간척지 중 대규모의 유휴지에 농촌진흥청 국립식량과학원에서 특허 출원한 물억새의 일종인 거대억새1호, 간척지 자생 물억새 및 자생 갈대의 에너지 작물을 바이오에너지 생산 목적으로 쓰레기 매립 예정지에서 재배한 최초의 연구로서 매립예정 간척지의 적응성 및 활용가치가 높은 에너지 작물을 선정함과 동시에 간척지 토양의 하수슬러지 고화물 처리로 인한 에너지 작물의 생육 상태 모니터링 및 토양화학성의 변화를 조사하였다. 1. 각 시험구의 토양 pH범위는 6.7~8.3이었으며 하수슬러지 고화물을 처리한 시험구는 원지반토보다 낮은 pH를 나타내었다. 원지반토의 염농도는 하수슬러지 고화물을 처리한 시험구에 비해 높은 치환성 나트륨 함량을 보이며 높은 염농도를 나타내었다. 2. 하수슬러지 고화물 처리구의 토양 유기물 함량은 재식 초기에는 원지반토에 비해 4배와 7배 높았고, 생육후기에도 2.9~5.6%로 원지반토의 0.75%에 비해 많았다. 3. 각 시험구의 에너지 작물 생육조사결과 거대억새1호가 다른 에너지 작물에 비해 간척지 토양에 하수슬러지 고화물을 투입한 시험구에 대한 적응력이 우수한 것으로 판단되었다. 4. 간척지에 하수슬러지 고화물의 투입으로 인하여 염해 완충능이 향상되는 등 토양이화학성이 개선되었으며, 에너지 작물의 생육이 원지반토에 비해 양호했던 점을 보아 매립예정 간척지의 토양 복토제로서 활용 가능성을 확인하였다. 5. 각 시험구의 에너지 작물 수확 후 마른줄기 수량을 조사한 결과 거대억새1호는 타 에너지 작물에 비해 가장 높은 바이오매스량을 나타내며, 거대억새1호는 바이오에너지 생산을 위한 최적의 에너지 작물임을 확인하였다.

Effect of Soil Salinity Levels on Silage Barley Growth at Saemangeum Reclaimed Tidal Land

  • Lee, Sanghun;Bae, Hui-Soo;Lee, Soo-Hwan;Kang, Jong-Gook;Kim, Hong-Kyu;Lee, Kyeong-Bo;Park, Ki-Hoon
    • 한국토양비료학회지
    • /
    • 제46권5호
    • /
    • pp.365-372
    • /
    • 2013
  • Crop development and nutrient availability are strongly influenced by soil salinity levels. This study was conducted to investigate the effect of rice straw and nitrogen (N) fertilizer for silage barley under various soil salinity levels at Saemangeum reclaimed tidal land. Three levels of rice straw (0, 2.5, 5.0 ton rice straw $ha^{-1}$) and N (0, 150, 225 kg N $ha^{-1}$) were applied at 0.04, 0.23, 0.35% soil salinity levels. Biomass yield of silage barley was influenced by the interactions between rice straw application and N fertilization. Although there was no single effect of rice straw application on biomass yield, it was significantly increased with N application and a rice straw application of 5.0 ton $ha^{-1}$. Sodium content in silage barley was significantly lower at 0.04% salinity level, and but it was statistically increased with increasing soil salinity levels. Forage qualities such as total digestible nutrients and relative feed value of silage barley were significantly higher with N application at 0.04% salinity level, but there was no effect of rice straw application. Soil organic matter content was increased with N and rice straw application regardless of soil salinity level. The results of this study showed that the effect of rice straw and N fertilization on silage barley was influenced by soil salinity levels, which indicates that the management practice of silage barley at Saemangeum reclaimed tidal land should consider soil salinity levels.

유기농업을 위한 잡초방제기술의 현재 미래 (Status and Prospect of Weed Control Technology for Organic Farming)

  • 전용웅
    • 한국유기농업학회지
    • /
    • 제6권2호
    • /
    • pp.127-140
    • /
    • 1998
  • Organic farming excludes any use of the herbicide. The present paper reviews what can be done for effective weed control with existing weed control technology by farmers crop-ping paddy rice, field crops, vegetables, and fruit trees. If condition of the crop-land-al-lows diversified rotational use of the paddy land as paddy and upland field would minimize weed problem. Practising this is limited in acreage due to extremely limited governmental investment to the land for the purpose. Secondly, rotation of crops in the upland field breaking life cycles of various weeds adapted to each crop should reduce the weed problem. This is also limited as only a few crops are making the farmer profitable. In addition climate and tolerance of crops to high and low temperature. Monsoon rains and poor drainage restrict the freedom of choice. For any crop land year-round multiple cropping in denser planting shall lessen the weed problem, this multiple cropping practiced by 1960s has been abandoned due to laborshortage and increased production cost. Deep flooding the rice is impractical at present in Korean. Mulching crop with transparent, black , or combinated polyethylene sheet, hs been in-creasingly used. Progresses in development and use of mulch with allelopathic crop residues. inexpensive paper mulch, allelopathic crop residues, inexpensive paper mulch, allelopathic crop cultivar development, recently developed ex-perimental weeding machinaries, flamers, microbial herbicides, biological control organisms, soil sterilization techniques have been critically reviewed for their adoption into existing in-tegrated weeding system. Unfortunately, information on cost-benifit, and labor-benefit, for the various methods above mentioned are lacking. Urgent need for the research on rational weeding in organic farming, and herbicide low-input farming is emphasized.

  • PDF

Soil Characteristics of Newly Reclaimed Tidal Land and Its Changes by Cultivation of Green Manure Crops

  • Lee, Kyeong-Bo;Kang, Jong-Gook;Lee, Kyeong-Do;Lee, Sanghun;Hwang, Seon-Ah;Hwang, Seon-Woong;Kim, Hong-Kyu
    • 한국토양비료학회지
    • /
    • 제46권2호
    • /
    • pp.129-135
    • /
    • 2013
  • This study was conducted to investigate the soil characteristics of newly reclaimed tidal land and the effect of green manure crops on soil properties. Summer green manure crops such as sesbania (Sesbania grandiflora), barnyard grass (Echinochloa spp.) and sorghum${\times}$sudangrass hybrid (Sorghum bicolor L.) were cultivated at Hwaong, Ewon, Saemangeum and Yongsangang area. Soil pH of reclaimed tidal land was relatively high, but organic matter and available phosphorus contents were lower compared to the optimum range for common upland crops. Soil nutrient contents were unbalanced for upland crop growth. Yield of green manure crops had a wide spatial variation. Nitrogen content in green manure crops was the greater in Sesbania and it was estimated that major nutrient ($N-P_2O_5-K_2O$) supply amount were 150-40-370, 220-50-170 and 140-50-250 $kg\;ha^{-1}$ from sorghum${\times}$sudangrass hybrid, sesbania and barnyard grass, respectively. Based on these results, desalination is required to grow the upland crops at newly reclaimed tidal lands and management practices are necessary to reduce the salt damage by resalinization during the growing seasons. To improve the productivity and increase the nutrient utilization rate, soil physicochemical properties need to be improved to the level for upland crops by application of organic matter and fertilizer.

Improved Method of Suitability Classification for Sesame (Sesamum indicum L.) Cultivation in Paddy Field Soils

  • Chun, Hyen Chung;Jung, Ki Yuol;Choi, Young Dae;Lee, Sanghun
    • 한국토양비료학회지
    • /
    • 제50권6호
    • /
    • pp.520-529
    • /
    • 2017
  • In Korea, the largest agricultural lands are paddy fields which have poor infiltration and drainage properties. Recently, Korean government pursuits cultivating upland crops in paddy fields to reduce overproduced rice in Korea. In order to succeed this policy, it is critical to set criteria suitability classification for upland crops cultivating in paddy field soils. The objective of this study was developing guideline of suitability classification for sesame cultivation in paddy field soils. Yields of sesame cultivated in paddy field soils and soil properties were investigated at 40 locations at nationwide scale. Soil properties such as topography, soil texture, soil moisture contents, slope, and drainage level were investigated. The guideline of suitability classification for sesame was determined by multi-regression method. As a result, sesame yields had the greatest correlation with topography, soil moisture content, and slope. Since sesame is sensitive to excessive soil moisture content, paddy fields with well drained, slope of 7-15% and mountain foot or hill were best suit for cultivating sesame. Sesame yields were greater with less soil moisture contents. Based on these results, area of best suitable paddy field land for sesame was 161,400 ha, suitable land was 62,600 ha, possible land was 331,600 ha, and low productive land was 1,075,500 ha. Compared to existing suitability classification, the new guideline of classification recommended smaller area of best or suitable areas to cultivate sesame. This result may suggest that sesame cultivation in paddy field can be very susceptible to soil moisture contents.