• 제목/요약/키워드: Crop Cultivation

검색결과 2,238건 처리시간 0.037초

Changes in Feed Value of Barley and Pea by Different Seeding Rates and Cutting Dates in Mixed Sowing Cultivation (보리와 완두의 혼파재배에서 혼파비율과 예취시기에 따른 사료가치의 변화)

  • Oh, Tae-Seok;Kim, Chang-Ho;Lee, Hyo-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • 제54권3호
    • /
    • pp.279-286
    • /
    • 2009
  • This study carried out to find out feed value of barley plus pea mixture with different ratio and cutting date to got basic information when introduced the mixture as new cropping system in middle part of Korean peninsular. Dry matter (DM) yield increased as barley seeding rate was higher and showed the highest yield in the plots with barley 85% plus 15% ratio when harvested on May 16. There was no different in crude protein, available protein and digestible protein cutting on April 25 in every mixture, but the content increased with higher pea mixture rate after May 2. The content of acid detergent fiber (ADF) and neutral detergent fiber (NDF) increase coincided with higher barley rate and late cutting dates. But relative feed value (RFV) resulted in opposite trend. Higher pea ratio influenced increased content of total digestible nuterients (TDN), but decreased before May 9 cutting and increased after the next cutting regime. There was no statistical difference in P and Mg between sowing rate, but Ca increased at higher pea ratio and P, Ca, K decreased in all plots as harvests were delayed. The content of estimated net energy (ENE), net energy maintenance (NEM) and net energy gain (NEG) significantly increased with higher pea rate and earlier cutting. But net energy lactation (NEL) was no significant differences between seeding rates and cutting dates. In conclusion, mineral yield such as P, Ca, K and Mg showed the highest yield at barley plus pea ratio of 75 : 25 and energy yield of ENE, NEL, NEM, NEG and TDN was the highest at 85 to 15 mixture plots and DM yield, TDN yield, mineral yield such as P, Ca, K and Mg and energy yield of ENE, NEL, NEM, NEG were the highest on each treatment cutting on May 16.

Evaluation of lines of NERICA 1 introgressed with Gn1a and WFP for yield and yield components as affected by nitrogen fertilization in Kenya

  • Makihara, Daigo;Samejima, Hiroaki;Kikuta, Mayumi;Kimani, John M.;Ashikari, Motoyuki;Angeles-Shim, Rosalyn;Sunohara, Hidehiko;Jena, Kshirod K.;Yamauchi, Akira;Doi, Kazuyuki
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.323-323
    • /
    • 2017
  • In many sub-Saharan African countries, boosting rice production is a pressing food security issue. To contribute to the increase in rice production, we have developed lines of NERICA 1 introgressed with the gene for spikelet number, Gn1a, and the gene for primary rachis-branch number, WFP by cross breeding. The performance of rice lines introgressed with the genes for yield related traits can be affected by cultivation environment and management. Thus, in this study, we aimed to evaluate the lines of NERICA 1 introgressed with Gn1a or/and WFP for yield and yield components under different nitrogen fertilization conditions in Kenya. A field trial was conducted at a paddy field in Kenya Agricultural and Livestock Research Organization-Mwea, Kirinyaga County ($0^{\circ}39^{\prime}S$, $0^{\circ}20^{\prime}E$) from August 2016 to January 2017. Eight lines of NERICA 1 introgressed with Gn1a and/or WFP, and their parents, NERICA 1 and ST12, were grown under 0 (NF) and $75(SF)kg\;N\;ha^{-1}$. At maturity, five hills per plot were harvested to determine the yield and yield components. The number of primary and secondary rachis-branches per panicle was measured on the longest panicle in each hill. Under SF, the introgression of WFP to NERICA 1 increased the number of primary and secondary rachis-branches by 27 and 25%, respectively. On the other hand, Gn1a did not increase the number of primary rachis-branches, whereas the number of secondary rachis-branches was increased by 38% on average. The number of primary and secondary rachis-branches of the lines introgressed with both genes increased by 25 and 56%, respectively. Although grain number per panicle increased 33% by Gn1a, 34% by WFP, and 43% by Gn1a+WFP, the yield increase by Gn1a, WFP, and Gn1a+WFP was only 14, 7, and 14%, respectively. The suppression of the yield increase was mainly attributed to the decline in the filled grain ratio. Under NF, WFP increased the number of primary and secondary rachis-branches by 20 and 19%, respectively. The introgression of both genes increased the former and the later by 19 and 35%, respectively. However, Gn1a did not change them under NF. Thus, even under NF, grain yield increased 11% by WFP and 24% by Gn1a+WFP due to the increased grain number although filled grain ratio declined. Our findings suggest that the introgression of Gn1a and WFP could contribute to the rice productivity improvement in sub-Saharan Africa even under low fertility conditions. Improving filled grain ratio of the lines introgressed with these genes by further breeding and fertilization management will be the focus of subsequent work.

  • PDF

Determination of optimum gamma ray range for radiation mutagenesis and hormesis in quinoa (Chenopodium quinoa Willd.)

  • Park, Chan Young;Song, Seon Hwa;Sin, Jong Mu;Lee, Hyeon Young;Kim, Jin Baek;Shim, Sang In
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.240-240
    • /
    • 2017
  • Quinoa (Chenopodium quinoa Willd.) is one of the ancient crops cultivated in the Andes region at an altitude of 3,500-4000m in Chile and Bolivia from 5000 BC. It contains a large amount of protein, minerals and vitamins in comparison with other crops. The cultivation area has been increasing worldwide because of its excellent resistance to various abiotic stress such as salinity, drought and low temperature. ${\gamma}$-Ray radiation of high dose is often used as a tool to induce mutations in plant breeding, but it has a deleterious effect on organisms. However, the radiation may have a positive stimulatory effect of 'hormesis' in the low dose range. This experiment was carried out to investigate the optimum dose range for creating the quinoa genetic resources and to investigate the hormesis effect at low dose on the quinoa. This experiment was performed for 120 days from November, 2016 to February, 2017 in the greenhouse of Gyeongsang National University. ${\gamma}$-Ray radiation was irradiated to seeds at 0 Gy, 50 Gy, 100 Gy, 200 Gy, 300 Gy, 400 Gy, 600 Gy, 800 Gy and 1000 Gy for 8 hours. (50 Gy) using the low level radiation facility ($Co^{60}$) of Cooperative Research Institute of Radiation Research Institute, KAERI. Fifty seeds were placed on each petri dish lined with wet filter paper and germination rate was measured at a time interval of 2 hours for 40 hrs. The length of the root length was measured one week after germination. Each treatment was carried out in 3 replicates. The growth of seedlings were investigated for 10 days after transplanting of 30 day-old seedlings. The plant height, NDVI, SPAD, Fv/Fm, and panicle weight were measured. The germination rate was highest at 50Gy and 0Gy and the rate of seeds treated with 400Gy or higher rate decreased to 25% of the seeds treated with 50Gy. The emergence rate of seedling in pot experiment was higher at the dose of 200 Gy, 300 Gy and 400 Gy than at 0 and 50Gy. However, the rate was lower at strong radiation higher than 600Gy at which $1^{st}$ leaf was not expanded fully and dead due to extreme overgrowth at 44 days after treatment (DAT). The highest value of panicle weight was observed at 50Gy (6.15g) and 100Gy (5.57g). On the other hand, the weight at high irradiated dose of 300Gy and 400Gy was decreased by about 55% compared to low dose (50 Gy). NDVI measurement also showed the highest value at 50 Gy as the growth progressed. SPAD was the highest at 400 Gy and showed positive correlation with irradiation dose except 0 Gy. Fv/Fm was high at 50 Gy up to 30 DAT and no difference between treatments was observed except for 400 Gy from 44 DAT. The plant height was the highest in 50Gy during the growing period and was higher in the order of 50Dy, 100Gy, 0Gy, 200Gy, 300Gy and 400Gy in 88 DAT. In this experiment, the optimal radiation dose for hormesis was 50Gy and 100Gy, and the optimal radiation dose for mutagenesis seems to be 400 Gy.

  • PDF

Uptake and Recovery of Urea-15N Blended with Different Rates of Composted Manure (퇴비의 혼합 시비율에 따른 Urea-15N의 이용율 및 회수율)

  • Ro, Hee-Myong;Choi, Woo-Jung;Yun, Seok-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제36권6호
    • /
    • pp.376-383
    • /
    • 2003
  • To utilize composts more efficiently, combining composts with fertilizer to meet crop requirements is an appealing alternative. A pot experiment was conducted to study the effect of application rate of composted pig manure blended with fertilizer on the availability and loss of fertilizer-N. Chinese cabbage (Brassica campestris L. cv. Samjin) plants were cultivated for 30 and 60 days. 15N-Labeled urea ($5.24\;^{15}N\;atom\;%$) was added to soil at $450mg\;N\;kg^{-1}$, and unlabeled compost ($0.37\;^{15}N\;atom\;%$) was added at 0, 200, 400, and $600mg\;N\;kg^{-1}$. The amount of plant-N derived from urea was not affected by compost application at rate of $200mg\;N\;kg^{-1}$. However, compost application at 400 and $600mg\;N\;kg^{-1}$ significantly (P<0.05) increased plant assimilation of N from urea irrespective of sampling time, probably because of physicochemical changes in the soil properties allowing urea-N to be assimilated more efficiently. The amount of immobilized urea-N increased with increasing rate of compost application at both growth periods, as the results of increased microbial activities using organic C in the compost. Total recovery of urea-N (as percentage of added N) by Chinese cabbage and soil also increased with increasing rate of compost from 71.5 to 95.6% and from 67.0 to 88.2% at the 30- and 60-days of growth, respectively. These results suggest that increasing rate of compost blending increases plant uptake of fertilizer-N and enhances immobilization of fertilizer-N, which leads to decrease in loss of fertilizer-N. However, information about the fate of immobilized N during future crop cultivation is necessary to verify long-term effect of compost blending.

Characteristics of Growth, Yield, and Physiological Responses of Small-Sized Watermelons to Different Soil Moisture Contents Affected by Irrigation Starting Point in a Plastic Greenhouse (소형 수박 시설 재배 시 관수개시점에 따른 토양수분 함량별 생육, 수량 및 생리적 반응 특성 구명)

  • Huh, Yoon-Sun;Kim, Eun-Jeong;Noh, Sol-Ji;Jeon, Yu-Min;Park, Sung-Won;Yun, Geon-Sig;Kim, Tae-Il;Kim, Young-Ho
    • Journal of Bio-Environment Control
    • /
    • 제29권4호
    • /
    • pp.388-398
    • /
    • 2020
  • Watermelon yield mainly depends on soil water content controlled by irrigation in a plastic greenhouse. In this study, we investigated the effect of different soil moisture contents affected by irrigation starting point on growth, yield, and physiological responses of small-sized watermelons. Irrigation was initiated at 5 different levels of soil water content as a starting point with soil moisture detecting sensor after 14 days of transplanting, and stopped at 7 ~ 10 days before harvest. These treatments were compared with the conventional periodic irrigation as control. When soil had the lowest moisture content (-50 kPa), the overall shoot growth was retarded, but the root length and root dry weight increased. The photosynthetic parameters (photosynthetic rate, stomatal conductance, and transpiration rate) of watermelon leaves decreased significantly in the lowest soil moisture content (-50 kPa). On the other hand, the photosynthetic rates of watermelon leaves grown with irrigation starting point between -20 and -40 kPa were observed to be higher than those of other treatments. Fruit set rate and marketable fruit yield increased significantly at -30 kPa and -40 kPa. Proline, abscisic acid (ABA), total phenol and citrulline, which are known to contribute to stress tolerance under drought condition, increased as soil water content decreased, particularly, the largest increases were recorded at -50 kPa. From these results, it was found that an appropriate water supply adjusted with an irrigation starting point between -30 and -40 kPa could help to keep favorable soil water content during the cultivation of small-sized watermelons, promoting the marketable fruit production as well as inducing the vigorous plant growth and reproductive development.

The Residue Property of Fungicide Dimethomorph and Pyraclostrobin in Green Onion under Greenhouse Condition (시설재배 쪽파에서 살균제 Dimethomorph와 Pyraclostrobin의 잔류특성)

  • Park, Jong-Woo;Kim, Tae-Hwa;Chae, Seok;Sim, Jae-Ryoung;Bae, Byung-Jin;Lee, Hae-Kuen;Son, Kyeong-Ae;Im, Geon-Jae;Kim, Jin-Bae;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • 제16권4호
    • /
    • pp.328-335
    • /
    • 2012
  • In order to use in the classification of minor crop for the mutual application of safe use guideline, it was investigated the residue property of fungicide dimethomorph and pyraclostrobin in green onion, a stem-crop. After pesticides were applied 2 times with 1 week interval in that day of harvest, 3 days, 7 days, 10 days and 14 days before harvest, a green onion was harvested. The residue of dimethomorph in a green onion was 26.31 and 39.08 mg/kg in that day of harvest, however, in according to elapse time, it was reduced to 6.86 and 9.34 mg/kg in 14 days before harvest. In case of pyraclostrobin, it was also reduced from 13.46 and 39.08 mg/kg to 3.57 and 5.21 mg/kg. Based on the residue in that day of harvest, the deposit of spray solution in a green onion was calculated. The deposit of spray solution of dimethomorph was 274.35~345.84 mL/kg, in case of pyraclostrobin, it was calculated 213.65~343.33 mL/kg. When the amount of the deposit of both pesticides was compared in a green onion, it was so similar. On the other hand, it was estimated the predicted dissipation curve of pesticides in the green onion during cultivation. The half-life of dimethomorph was 6.95~7.45 days, in case of pyraclostrobin, 7.15~7.45 days. When both pesticides were compared with the residue property, the deposit of spray solution and half-life of dissipation were so similar.

Performance of Drip Irrigation System in Banana Cultuivation - Data Envelopment Analysis Approach

  • Kumar, K. Nirmal Ravi;Kumar, M. Suresh
    • Agribusiness and Information Management
    • /
    • 제8권1호
    • /
    • pp.17-26
    • /
    • 2016
  • India is largest producer of banana in the world producing 29.72 million tonnes from an area of 0.803 million ha with a productivity of 35.7 MT ha-1 and accounted for 15.48 and 27.01 per cent of the world's area and production respectively (www.nhb.gov.in). In India, Tamil Nadu leads other states both in terms of area and production followed by Maharashtra, Gujarat and Andhra Pradesh. In Rayalaseema region of Andhra Pradesh, Kurnool district had special reputation in the cultivation of banana in an area of 5765 hectares with an annual production of 2.01 lakh tonnes in the year 2012-13 and hence, it was purposively chosen for the study. On $23^{rd}$ November 2003, the Government of Andhra Pradesh has commenced a comprehensive project called 'Andhra Pradesh Micro Irrigation Project (APMIP)', first of its kind in the world so as to promote water use efficiency. APMIP is offering 100 per cent of subsidy in case of SC, ST and 90 per cent in case of other categories of farmers up to 5.0 acres of land. In case of acreage between 5-10 acres, 70 per cent subsidy and acreage above 10, 50 per cent of subsidy is given to the farmer beneficiaries. The sampling frame consists of Kurnool district, two mandals, four villages and 180 sample farmers comprising of 60 farmers each from Marginal (<1ha), Small (1-2ha) and Other (>2ha) categories. A well structured pre-tested schedule was employed to collect the requisite information pertaining to the performance of drip irrigation among the sample farmers and Data Envelopment Analysis (DEA) model was employed to analyze the performance of drip irrigation in banana farms. The performance of drip irrigation was assessed based on the parameters like: Land Development Works (LDW), Fertigation costs (FC), Volume of water supplied (VWS), Annual maintenance costs of drip irrigation (AMC), Economic Status of the farmer (ES), Crop Productivity (CP) etc. The first four parameters are considered as inputs and last two as outputs for DEA modelling purposes. The findings revealed that, the number of farms operating at CRS are more in number in other farms (46.66%) followed by marginal (45%) and small farms (28.33%). Similarly, regarding the number of farmers operating at VRS, the other farms are again more in number with 61.66 per cent followed by marginal (53.33%) and small farms (35%). With reference to scale efficiency, marginal farms dominate the scenario with 57 per cent followed by others (55%) and small farms (50%). At pooled level, 26.11 per cent of the farms are being operated at CRS with an average technical efficiency score of 0.6138 i.e., 47 out of 180 farms. Nearly 40 per cent of the farmers at pooled level are being operated at VRS with an average technical efficiency score of 0.7241. As regards to scale efficiency, nearly 52 per cent of the farmers (94 out of 180 farmers) at pooled level, either performed at the optimum scale or were close to the optimum scale (farms having scale efficiency values equal to or more than 0.90). Majority of the farms (39.44%) are operating at IRS and only 29 per cent of the farmers are operating at DRS. This signifies that, more resources should be provided to these farms operating at IRS and the same should be decreased towards the farms operating at DRS. Nearly 32 per cent of the farms are operating at CRS indicating efficient utilization of resources. Log linear regression model was used to analyze the major determinants of input use efficiency in banana farms. The input variables considered under DEA model were again considered as influential factors for the CRS obtained for the three categories of farmers. Volume of water supplied ($X_1$) and fertigation cost ($X_2$) are the major determinants of banana farms across all the farmer categories and even at pooled level. In view of their positive influence on the CRS, it is essential to strengthen modern irrigation infrastructure like drip irrigation and offer more fertilizer subsidies to the farmer to enhance the crop production on cost-effective basis in Kurnool district of Andhra Pradesh, India. This study further suggests that, the present era of Information Technology will help the irrigation management in the context of generating new techniques, extension, adoption and information. It will also guide the farmers in irrigation scheduling and quantifying the irrigation water requirements in accordance with the water availability in a particular season. So, it is high time for the Government of India to pay adequate attention towards the applications of 'Information and Communication Technology (ICT) and its applications in irrigation water management' for facilitating the deployment of Decision Supports Systems (DSSs) at various levels of planning and management of water resources in the country.

Estimating the Yield of Marketable Potato of Mulch Culture using Climatic Elements (시기별 기상값 활용 피복재배 감자 상서수량 예측)

  • Lee, An-Soo;Choi, Seong-Jin;Jeon, Shin-Jae;Maeng, Jin-Hee;Kim, Jong-Hwan;Kim, In-Jong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • 제61권1호
    • /
    • pp.70-77
    • /
    • 2016
  • The object of this study was to evaluate the effects of climatic elements on potato yield and create a model for estimating the potato yield. We used 35 yield data of Sumi variety produced in mulching cultivation from 17 regions over 11 years. According to the results, some climatic elements showed significant level of correlation coefficient with marketable yield of potato. Totally 22 items of climatic elements appeared to be significant. Especially precipitation for 20 days after planting (Prec_1 & 2), relative humidity during 11~20 days after planting (RH_2), precipitation for 20 days before harvest (Prec_9 & 10), sunshine hours during 50~41 days before harvest (SH_6) and 20 days before harvest (SH_9 & 10), and days of rain during 10 days before harvest (DR_10) were highly significant in quadratic regression analysis. 22 items of predicted yield ($Y_i=aX_i{^2}+bX_i+c$) were induced from the 22 items of climatic elements (step 1). The correlations between the predicted yields and marketable yield were stepwised using SPSS, statistical program, and we selected a model (step 2), in which 4 items of independent variables ($Y_i$) were used. Subsequently the $Y_i$ were replaced with the equation in step 1, $aX_i{^2}+bX_i+c$. Finally we derived the model to predict the marketable yield of potato as below. $$Y=-336{\times}DR_-10^2+854{\times}DR_-10-0.422{\times}Prec_-9^2+43.3{\times}Prec_-9\\-0.0414{\times}RH_-2^2+46.2{\times}RH_-2-0.0102{\times}Prec_-2^2-7.00{\times}Prec_-2-10039$$.

Methods of Application and Beneficial Effects of Silicate-Coating Rice Seeds (볍씨의 규산코팅방법에 따른 이용특성과 육묘효과)

  • Kang, Yang-Soon;Kim, Wan Joong;Hwang, Duck Sang;Kim, Hee Kyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • 제65권1호
    • /
    • pp.30-39
    • /
    • 2020
  • A new silicate coating technology was developed which reduces the impact of dust and loosening during seeding compared to existing silicate-coatings (Seed/Si/Zeolite), and therefore can lower the production costs of rice cultivation. In this method, 100 g of rice seed is coated with 18 mL of liquid silicic acid and then dressed with a mixture containing 80 g of dolomite and 5 g of iron. To determine the most effective method of application and ensure that seedlings developed healthily, a series of experiments were carried out. Infected seeds scattered in seedling boxes and pots (soil and hydroponic) were coated dry, without disinfection. In comparison to the seed which were not treated with the silicate-coating, the new seed (A) were 1.84 times heavier in weight, and were also improved in terms of coating strength and coating color. Compared to the seedlings grown from the non-coated seed, those grown from the new silicate-coated seed were of significantly higher quality (weight/length) and had erect, dark greenish leaves, which are ideal plant characteristics. This was most likely due to increased silicate uptake. The symptoms of bakanae disease in the non-coated seed peaked after 38 days to 54.2%, whereas the control value was 68.8% in the new silicate-coated seed (A). In the infected seedlings grown from the new silicate-coated rice seed, subnormal macro-conidia, namely, a sickle shape spore without a septum; a straight oblong shape spore without a septum and with a thick cell wall; and inter-septal necrosis of a normal spore were detected. It is believed that the strong alkalinity of silicic acid have acted as unfavorable conditions for pathogenicity. In seedlings grown from the new silicate coated rice seed under hydroponic conditions without nutrients, normal root activity and growth was maintained without leaf senescence. Therefore, it was possible to reduce the rate of fertilization. In the future, a new silicate-coated rice seed was required for the study of minimal nutrition for anti-aging of seedlings.

Effect of Night-break Timing on Growth, Bolting and Anthesis of Orostachys japonicus (암기중단 처리시기에 따른 바위솔의 생장, 추대 및 개화)

  • 강진호;류영섭;강신윤;심영도;김동일
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • 제42권5호
    • /
    • pp.597-603
    • /
    • 1997
  • Orostachys japonicus, Wasong as herb medicine, has been artificially cultivated as an anti-tumor medicinal. The experiment was carried out to examine the effect of natural daylength as control or night-break treatment (NB) imposed at June 20, July 18 or Aug. 15 on its growth, dry weights of leaf and bract, stem, floret and root, and morphological characters including bolting and floret flowering. After a plant was grown in a 15cm plastic pot containing a 2 : 1 soil : peat moss mixture on May 23, three treatments with above differing night-break had been imposed around midnight up to Nov. 7. The plants were sampled 3 times at the same day forced to night-break and then done 6 times by 2-week interval after the final NB. Plant height and inflorescence length of all the NB increased with delayed NB but declined in comparison with the natural daylength. No. of leaves including bracts showed similar response to plant height although NB given before July 18 showed less leaves and bracts. Stem diameters of NB were continuously increased to middle Sept. to middle Oct. while that of natural daylength decreased after middle Oct. Natural daylength or NB given on Aug. 15 had greater fraction, shoot and total dry weights resulting from increment of leaf and bract up to Aug. or of floret, stem and root after Sept. The earlier NB, the later formation of florets and the less number of flowering florets whereas in natural daylength florets on inflorescence begun to be formed from middle Sept. were sharply increased up to middle Oct. when all the plants were flowered. Bolting was not formed in the plant of the earliest NB of June 20, and thereby no anthesis of florets up to early Nov. It was concluded that year-round cultivation of Orostachys japonicus plants was possible through controlling the NB timing because its bolting and flowering of florets separately occurred.

  • PDF