• 제목/요약/키워드: Crop Classification

검색결과 263건 처리시간 0.023초

Improved Method of Suitability Classification for Sesame (Sesamum indicum L.) Cultivation in Paddy Field Soils

  • Chun, Hyen Chung;Jung, Ki Yuol;Choi, Young Dae;Lee, Sanghun
    • 한국토양비료학회지
    • /
    • 제50권6호
    • /
    • pp.520-529
    • /
    • 2017
  • In Korea, the largest agricultural lands are paddy fields which have poor infiltration and drainage properties. Recently, Korean government pursuits cultivating upland crops in paddy fields to reduce overproduced rice in Korea. In order to succeed this policy, it is critical to set criteria suitability classification for upland crops cultivating in paddy field soils. The objective of this study was developing guideline of suitability classification for sesame cultivation in paddy field soils. Yields of sesame cultivated in paddy field soils and soil properties were investigated at 40 locations at nationwide scale. Soil properties such as topography, soil texture, soil moisture contents, slope, and drainage level were investigated. The guideline of suitability classification for sesame was determined by multi-regression method. As a result, sesame yields had the greatest correlation with topography, soil moisture content, and slope. Since sesame is sensitive to excessive soil moisture content, paddy fields with well drained, slope of 7-15% and mountain foot or hill were best suit for cultivating sesame. Sesame yields were greater with less soil moisture contents. Based on these results, area of best suitable paddy field land for sesame was 161,400 ha, suitable land was 62,600 ha, possible land was 331,600 ha, and low productive land was 1,075,500 ha. Compared to existing suitability classification, the new guideline of classification recommended smaller area of best or suitable areas to cultivate sesame. This result may suggest that sesame cultivation in paddy field can be very susceptible to soil moisture contents.

Improving Field Crop Classification Accuracy Using GLCM and SVM with UAV-Acquired Images

  • Seung-Hwan Go;Jong-Hwa Park
    • 대한원격탐사학회지
    • /
    • 제40권1호
    • /
    • pp.93-101
    • /
    • 2024
  • Accurate field crop classification is essential for various agricultural applications, yet existing methods face challenges due to diverse crop types and complex field conditions. This study aimed to address these issues by combining support vector machine (SVM) models with multi-seasonal unmanned aerial vehicle (UAV) images, texture information extracted from Gray Level Co-occurrence Matrix (GLCM), and RGB spectral data. Twelve high-resolution UAV image captures spanned March-October 2021, while field surveys on three dates provided ground truth data. We focused on data from August (-A), September (-S), and October (-O) images and trained four support vector classifier (SVC) models (SVC-A, SVC-S, SVC-O, SVC-AS) using visual bands and eight GLCM features. Farm maps provided by the Ministry of Agriculture, Food and Rural Affairs proved efficient for open-field crop identification and served as a reference for accuracy comparison. Our analysis showcased the significant impact of hyperparameter tuning (C and gamma) on SVM model performance, requiring careful optimization for each scenario. Importantly, we identified models exhibiting distinct high-accuracy zones, with SVC-O trained on October data achieving the highest overall and individual crop classification accuracy. This success likely stems from its ability to capture distinct texture information from mature crops.Incorporating GLCM features proved highly effective for all models,significantly boosting classification accuracy.Among these features, homogeneity, entropy, and correlation consistently demonstrated the most impactful contribution. However, balancing accuracy with computational efficiency and feature selection remains crucial for practical application. Performance analysis revealed that SVC-O achieved exceptional results in overall and individual crop classification, while soybeans and rice were consistently classified well by all models. Challenges were encountered with cabbage due to its early growth stage and low field cover density. The study demonstrates the potential of utilizing farm maps and GLCM features in conjunction with SVM models for accurate field crop classification. Careful parameter tuning and model selection based on specific scenarios are key for optimizing performance in real-world applications.

An Assessment of a Random Forest Classifier for a Crop Classification Using Airborne Hyperspectral Imagery

  • Jeon, Woohyun;Kim, Yongil
    • 대한원격탐사학회지
    • /
    • 제34권1호
    • /
    • pp.141-150
    • /
    • 2018
  • Crop type classification is essential for supporting agricultural decisions and resource monitoring. Remote sensing techniques, especially using hyperspectral imagery, have been effective in agricultural applications. Hyperspectral imagery acquires contiguous and narrow spectral bands in a wide range. However, large dimensionality results in unreliable estimates of classifiers and high computational burdens. Therefore, reducing the dimensionality of hyperspectral imagery is necessary. In this study, the Random Forest (RF) classifier was utilized for dimensionality reduction as well as classification purpose. RF is an ensemble-learning algorithm created based on the Classification and Regression Tree (CART), which has gained attention due to its high classification accuracy and fast processing speed. The RF performance for crop classification with airborne hyperspectral imagery was assessed. The study area was the cultivated area in Chogye-myeon, Habcheon-gun, Gyeongsangnam-do, South Korea, where the main crops are garlic, onion, and wheat. Parameter optimization was conducted to maximize the classification accuracy. Then, the dimensionality reduction was conducted based on RF variable importance. The result shows that using the selected bands presents an excellent classification accuracy without using whole datasets. Moreover, a majority of selected bands are concentrated on visible (VIS) region, especially region related to chlorophyll content. Therefore, it can be inferred that the phenological status after the mature stage influences red-edge spectral reflectance.

농작물 질병분류를 위한 전이학습에 사용되는 기초 합성곱신경망 모델간 성능 비교 (Performance Comparison of Base CNN Models in Transfer Learning for Crop Diseases Classification)

  • 윤협상;정석봉
    • 산업경영시스템학회지
    • /
    • 제44권3호
    • /
    • pp.33-38
    • /
    • 2021
  • Recently, transfer learning techniques with a base convolutional neural network (CNN) model have widely gained acceptance in early detection and classification of crop diseases to increase agricultural productivity with reducing disease spread. The transfer learning techniques based classifiers generally achieve over 90% of classification accuracy for crop diseases using dataset of crop leaf images (e.g., PlantVillage dataset), but they have ability to classify only the pre-trained diseases. This paper provides with an evaluation scheme on selecting an effective base CNN model for crop disease transfer learning with regard to the accuracy of trained target crops as well as of untrained target crops. First, we present transfer learning models called CDC (crop disease classification) architecture including widely used base (pre-trained) CNN models. We evaluate each performance of seven base CNN models for four untrained crops. The results of performance evaluation show that the DenseNet201 is one of the best base CNN models.

심층 신경망 기반의 앙상블 방식을 이용한 토마토 작물의 질병 식별 (Tomato Crop Disease Classification Using an Ensemble Approach Based on a Deep Neural Network)

  • 김민기
    • 한국멀티미디어학회논문지
    • /
    • 제23권10호
    • /
    • pp.1250-1257
    • /
    • 2020
  • The early detection of diseases is important in agriculture because diseases are major threats of reducing crop yield for farmers. The shape and color of plant leaf are changed differently according to the disease. So we can detect and estimate the disease by inspecting the visual feature in leaf. This study presents a vision-based leaf classification method for detecting the diseases of tomato crop. ResNet-50 model was used to extract the visual feature in leaf and classify the disease of tomato crop, since the model showed the higher accuracy than the other ResNet models with different depths. We propose a new ensemble approach using several DCNN classifiers that have the same structure but have been trained at different ranges in the DCNN layers. Experimental result achieved accuracy of 97.19% for PlantVillage dataset. It validates that the proposed method effectively classify the disease of tomato crop.

무인기 기반 영상과 SVM 모델을 이용한 가을수확 작물 분류 - 충북 괴산군 이담리 지역을 중심으로 - (Classification of Fall Crops Using Unmanned Aerial Vehicle Based Image and Support Vector Machine Model - Focusing on Idam-ri, Goesan-gun, Chungcheongbuk-do -)

  • 정찬희;고승환;박종화
    • 농촌계획
    • /
    • 제28권1호
    • /
    • pp.57-69
    • /
    • 2022
  • Crop classification is very important for estimating crop yield and figuring out accurate cultivation area. The purpose of this study is to classify crops harvested in fall in Idam-ri, Goesan-gun, Chungcheongbuk-do by using unmanned aerial vehicle (UAV) images and support vector machine (SVM) model. The study proceeded in the order of image acquisition, variable extraction, model building, and evaluation. First, RGB and multispectral image were acquired on September 13, 2021. Independent variables which were applied to Farm-Map, consisted gray level co-occurrence matrix (GLCM)-based texture characteristics by using RGB images, and multispectral reflectance data. The crop classification model was built using texture characteristics and reflectance data, and finally, accuracy evaluation was performed using the error matrix. As a result of the study, the classification model consisted of four types to compare the classification accuracy according to the combination of independent variables. The result of four types of model analysis, recursive feature elimination (RFE) model showed the highest accuracy with an overall accuracy (OA) of 88.64%, Kappa coefficient of 0.84. UAV-based RGB and multispectral images effectively classified cabbage, rice and soybean when the SVM model was applied. The results of this study provided capacity usefully in classifying crops using single-period images. These technologies are expected to improve the accuracy and efficiency of crop cultivation area surveys by supplementing additional data learning, and to provide basic data for estimating crop yields.

Comparative Analysis of Supervised and Phenology-Based Approaches for Crop Mapping: A Case Study in South Korea

  • Ehsan Rahimi;Chuleui Jung
    • 대한원격탐사학회지
    • /
    • 제40권2호
    • /
    • pp.179-190
    • /
    • 2024
  • This study aims to compare supervised classification methods with phenology-based approaches, specifically pixel-based and segment-based methods, for accurate crop mapping in agricultural landscapes. We utilized Sentinel-2A imagery, which provides multispectral data for accurate crop mapping. 31 normalized difference vegetation index (NDVI) images were calculated from the Sentinel-2A data. Next, we employed phenology-based approaches to extract valuable information from the NDVI time series. A set of 10 phenology metrics was extracted from the NDVI data. For the supervised classification, we employed the maximum likelihood (MaxLike) algorithm. For the phenology-based approaches, we implemented both pixel-based and segment-based methods. The results indicate that phenology-based approaches outperformed the MaxLike algorithm in regions with frequent rainfall and cloudy conditions. The segment-based phenology approach demonstrated the highest kappa coefficient of 0.85, indicating a high level of agreement with the ground truth data. The pixel-based phenology approach also achieved a commendable kappa coefficient of 0.81, indicating its effectiveness in accurately classifying the crop types. On the other hand, the supervised classification method (MaxLike) yielded a lower kappa coefficient of 0.74. Our study suggests that segment-based phenology mapping is a suitable approach for regions like South Korea, where continuous cloud-free satellite images are scarce. However, establishing precise classification thresholds remains challenging due to the lack of adequately sampled NDVI data. Despite this limitation, the phenology-based approach demonstrates its potential in crop classification, particularly in regions with varying weather patterns.

Sentinel-2 위성영상을 이용한 하계 논벼와 동계작물 재배 필지 분류 및 정확도 평가 (Classification of Summer Paddy and Winter Cropping Fields Using Sentinel-2 Images)

  • 홍주표;장성주;박진석;신형진;송인홍
    • 한국농공학회논문집
    • /
    • 제64권1호
    • /
    • pp.51-63
    • /
    • 2022
  • Up-to-date statistics of crop cultivation status is essential for farm land management planning and the advancement in remote sensing technology allows for rapid update of farming information. The objective of this study was to develop a classification model of rice paddy or winter crop fields based on NDWI, NDVI, and HSV indices using Sentinel-2 satellite images. The 18 locations in central Korea were selected as target areas and photographed once for each during summer and winter with a eBee drone to identify ground truth crop cultivation. The NDWI was used to classify summer paddy fields, while the NDVI and HSV were used and compared in identification of winter crop cultivation areas. The summer paddy field classification with the criteria of -0.195

선택적 계층 분류를 이용한 MODIS 자료 기반 작물 분류 (MODIS Data-based Crop Classification using Selective Hierarchical Classification)

  • 김예슬;이경도;나상일;홍석영;박노욱;유희영
    • 대한원격탐사학회지
    • /
    • 제32권3호
    • /
    • pp.235-244
    • /
    • 2016
  • MODIS 자료를 이용한 대규모 작물 분류에는 MODIS 자료의 상대적으로 낮은 공간해상도로 인한 분광학적 혼재 양상이 두드러지게 나타난다. 이러한 분광학적 혼재를 완화하기 위하여 이 연구에서는 작물의 분광특성을 이용하여 특정 작물의 계층을 선택적으로 구분하고 상세 분류를 수행하는 선택적 계층 분류 방법론을 제안하였다. 제안 방법론에서는 특정 작물에 대한 선택적 분류를 수행함으로써 작물간의 혼재를 완화하고 구분력을 향상시킬 수 있다. 제안 방법론의 적용성 평가에는 중국 길림성의 길림시를 대상으로 MODIS 정규식생지수 자료와 근적외선 자료를 이용한 작물 분류의 사례 연구를 수행하였다. 먼저 근적외선 자료의 무감독 분류를 수행하여 벼의 재배지역을 우선적으로 추출한 후에, 시계열 정규식생지수 자료를 이용하여 벼 재배지역이 아닌 영역을 대상으로 옥수수와 콩의 상세 분류를 수행하였다. 사례 연구 결과, 제안 방법론은 유사한 분광특성을 갖는 작물의 계층을 선택적으로 구분함으로써 기존 시계열 정규식생지수 자료와 근적외선 자료를 함께 이용하는 감독 분류 결과보다 향상된 분류 정확도를 나타내었다. 따라서 신뢰성 있는 작물 구분도 제작에 제안 방법론이 효과적으로 사용될 수 있을 것으로 기대된다.

작물 분류를 위한 딥러닝 기반 비지도 도메인 적응 모델 비교 (Comparison of Deep Learning-based Unsupervised Domain Adaptation Models for Crop Classification)

  • 곽근호;박노욱
    • 대한원격탐사학회지
    • /
    • 제38권2호
    • /
    • pp.199-213
    • /
    • 2022
  • 비지도 도메인 적응은 연단위 작물 분류를 위해 매년 반복적으로 양질의 훈련자료를 수집해야 하는 비실용적인 문제를 해결할 수 있다. 이 연구에서는 작물 분류를 위한 딥러닝 기반 비지도 도메인 적응 모델의 적용성을 평가하였다. 우리나라 마늘, 양파 주산지인 합천군과 창녕군을 대상으로 무인기 영상을 이용한 작물 분류 실험을 통해 deep adaptation network (DAN), deep reconstruction-classification network, domain adversarial neural network (DANN)의 3개의 비지도 도메인 적응 모델을 정량적으로 비교하였다. 비지도 도메인 적응 모델의 분류 성능을 평가하기 위해 소스 베이스라인 및 대상 베이스라인 모델로 convolutional neural networks (CNNs)을 추가로 적용하였다. 3개의 비지도 도메인 적응 모델은 소스 베이스라인 CNN보다 우수한 성능을 보였으나, 소스 도메인 영상과 대상 도메인 영상의 자료 분포 간 불일치 정도에 따라 서로 다른 분류 성능을 보였다. DAN의 분류 성능은 두 도메인 영상 간 불일치가 작을 때 다른 두 모델에 비해 분류 성능이 높은 반면에 DANN은 두 도메인 영상 간 불일치가 클 때 가장 우수한 분류 성능을 보였다. 따라서 신뢰할 수 있는 분류 결과를 생성하기 위해 두 도메인 영상의 분포가 일치하는 정도를 고려해서 최상의 비지도 도메인 적응 모델을 선택해야 한다.