• Title/Summary/Keyword: Critical thickness

Search Result 911, Processing Time 0.035 seconds

The study of bending and buckling behavior of sandwich structure according to design parameter variation (설계변수 변화에 따른 샌드위치 구조물의 굽힘 및 좌굴 거동에 관한 연구)

  • 한근조;안성찬;안성찬;김진영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.841-844
    • /
    • 1997
  • Sandwich structure is widely used in various fields of industry due to its excellent strength and stiffness compared with weight. We studied the buckling and bending behavior with respect to the variation of design parameters such as length, height, and thickness of honeycomb sandwich core. We found that as the density and the thickness of core become higher, the value of critical bucking load increased significantly. We found that the effect of bending stress due to critical buckling load resulted in high bending stress and the value of bending stress decreased in half according to the increase of length of core. The effect by bending stress is dominant above the portion of the intersection line between bending stress and the effect of buckling is dominant below the potion of it. We could get proper thickness ratio and density of core according to applied load conditions.

  • PDF

Buckling of simply supported thin plate with variable thickness under bi-axial compression using perturbation technique

  • Fan, Haigui;Chen, Zhiping;Wang, Zewu;Liu, Peiqi
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.525-534
    • /
    • 2019
  • An analytical research on buckling of simply supported thin plate with variable thickness under bi-axial compression is presented in this paper. Combining the perturbation technique, Fourier series expansion and Galerkin methods, the linear governing differential equation of the plate with arbitrary thickness variation under bi-axial compression is solved and the analytical expression of the critical buckling load is obtained. Based on that, numerical analysis is carried out for the plates with different thickness variation forms and aspect ratios under different bi-axial compressions. Four different thickness variation forms including linear, parabolic, stepped and trigonometric have been considered in this paper. The calculated critical buckling loads and buckling modes are presented and compared with the published results in the tables and figures. It shows that the analytical expressions derived by the theoretical method in this paper can be effectively used for buckling analysis of simply supported thin plates with arbitrary thickness variation, especially for the stepped thickness that used in engineering widely.

Microstructural Observation of Multi-coated YBCO Films Prepared by TFA-MOD (TFA-MOD법으로 제조된 다층 YBCO 박막의 미세구조 관찰)

  • Jang, Seok-Hern;Lim, Jun-Hyung;Lee, Chang-Min;Hwang, Soo-Min;Choi, Jun-Hyuk;Shim, Jong-Hyun;Joo, Jin-Ho;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.167-172
    • /
    • 2008
  • We fabricated $YBa_2Cu_3O_{7-x}$(YBCO) films on (00l) $LaAlO_3$ substrates prepared by metal organic deposition(MOD) method using trifluoroacetate(TFA) solution. The films with various thicknesses were prepared by repeating the dip-coating and calcining processes. The effects of film thickness on phase formation, microstructures, and critical properties were evaluated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The microstructure and resultant critical current($I_C$) and critical current density($J_C$) varied remarkably with film thickness: The ($I_C$) value increased from 39 to 160 A/cm-width as the number of coatings increased from one to four, while the corresponding $J_C$ was measured to be in the range of $0.84-1.21\;MA/cm^2$. Both the $I_C$ and $J_C$ decreased when an additional coating was applied due to microstructural degradation, indicating that the optimum thickness is in the range of $1.1-1.8\;{\mu}m$. The possible cause for the decrease in the $I_C$ and $J_C$ value for film thicker than $1.8\;{\mu}m$ include non-uniform thickness, increased surface roughness, and the poor formability of the YBCO phase and texture arising from the insufficient heat treatment time with respect to the increased thickness.

  • PDF

Study on the Determination of Fire Protection Thickness based on Section Factor (강재의 단면형상에 따른 내화피복두께 산정 연구)

  • 정청운;지남용;권인규
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.139-142
    • /
    • 2003
  • Traditionally, the thickness of fire protection materials of structural elements such as beam and column have been decided by fire test using the predominant steel section of $H-300{\times}300{\times}10{\times}15$ for column and $H-400{\times}200{\times}8{\times}13$ for beam in Korea. But this way of determination of fire protection thickness yields very unduly results. Because the temperature-increment rate of structural steel elements depends mainly on magnitude of their cross-areas. In general, the thicker size of cross-areas for structural elements, the lower temperature shows up. It had already proved that the fire protection thickness only depends on the size of cross-areas and the fire protection method for three-fide or four-side exposed conditions in European countries, the United State of America and so on. To demonstrate there would be differences among various cross-areas for structural elements, we conducted several fire tests with full-scale specimens of beams and columns. For the determination of critical temperature for steel section when the fire resistant performance is needed to be decided, we conducted with a loaded fire test for beam and column, respectively. The small column in 1.0 meter length and beam in 1.5 meter length were used in order to deprive the rational fire protection thickness of structural elements such as beam and column, respectively. After test, we could obtain there were significant temperature lass between higher cross-areas and lower cross-areas. The critical temperature of steel as a criterion is used 538$^{\circ}C$ for column and 593$^{\circ}C$ for beam which is from ASTM E 119 because we don't make provisions as critical temperature by elements. We could consider that the best way of determination of fire protection thickness is using the following multi-regression equation which was deprived from several fire tests using the concept of section factor, FR(column) = 0.17 +5191.49t A/Hp + 40.77t, FR(beam) = 0.25 +6899.31t A/Hp + 32.60t(where, FR means fire resistant time, t means thickness, A means cross-area and Hp means heated parameter).

  • PDF

Influence of Ring Gear Boundary Conditions on the Static Characteristics of Epicyclic Gear Trains with Manufacturing Errors (링기어의 경계조건이 가공오차를 가지는 유성기어열의 정특성에 미치는 영향)

  • Cheon, Gill-Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1949-1957
    • /
    • 2003
  • A hybrid finite element analysis was used to analyze the influence of ring gear rim thickness and spline number on the static properties of a planetary gear system with manufacturing errors. Both of these parameters affected the bearing force and critical stress. The effect of changes in the rim thickness on the load sharing between the gears depended on the type of manufacturing error. Ring flexibility improved the load sharing between planetary gears only in systems with planet tooth thickness or planet tangential errors; for other types of error, ring flexibility worsened the load sharing. To improve load sharing, rim thickness and spline number should be controlled within a specific range. The minimum rim thickness limit should be determined considering not only the critical stress but also the load sharing. The effect of the ring gear boundary condition was more apparent in a system with errors than in a normal system.

Thermoelastic Instability of the Layer Sliding between Two Non-conducting Half-planes (비전도 반평판 사이에서 미끄럼 운동하는 평판 층의 열탄성 불안정성)

  • 하태원;조용구;김흥섭;이정윤;오재응
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.483-488
    • /
    • 2003
  • Frictional heating in brakes causes thermoelastic distortion of the contacting bodies and hence affects the contact pressure distribution. The resulting thermo-mechanical coupling can cause thermoelastic instability (TEI) if the sliding speed is sufficiently high, leading to non-uniform heating called hot spots and low frequency vibration known as hot judder. The vibration of brakes to the known phenomenon of frictionally-excited thermoelastic instability is estimated studying the interface temperature and pressure evolution with time. A simple model has been considered where a layer with half-thickness ${\alpha}$ slides with speed V between two half-planes which are rigid and non-conducting. The advantage of this properly simple model permits us to deduce analytically the critical conditions for the onset of instability, which is the relation between the critical speed and the growth rate of the interface temperature and pressure. Symmetrical component of pressure and temperature distribution at the layer interfaces can be more unstable than antisymmetrical component. As the thickness ${\alpha}$ reduces, the system becomes more apt to thermoelastic instability. Moreover, the evolution of the system beyond the critical conditions has shown that even if low frequency perturbations are associated with low critical speed, it might be less critical than high frequency perturbations if the working sliding speed is much larger than the actual critical speed of the system.

  • PDF

Metal-insulator Transition in Low Dimensional $La_{0.75}Sr_{0.25}VO_3$ Thin Films

  • Huynh, Sa Hoang;Dao, Tran M.;Mondal, Partha S.;Takamura, Y.;Arenholz, E.;Lee, Jai-Chan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.19.1-19.1
    • /
    • 2011
  • We report on the metal-insulator transition that occurs as a function of film thickness in ultrathin $La_{0.75}Sr_{0.25}VO_3$ films. The metal-insulator transition displays a critical thickness of 5 unit cell. Above the critical thickness, metallic films exhibit a temperature driven metal-insulator transition with weak localization behavior. With decreasing film thickness, oxygen octahedron rotation in the films increases, causing enhanced electron-electron correlation. The electron-electron correlations in ultrathin films induce the transition from metal to insulator in addition to Anderson localization.

  • PDF

Initial Growth Mode and Epitaxial Growth of AIN Thin Films on $Al_2O_3(0001)$ Substrate by DC Faced Target Sputtering

  • Kim, Jin-Woo;Kang, Kwang-Yong;Lee, Su-Jae
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.368-370
    • /
    • 1999
  • Using DC faced target sputtering method we grow AIN the films on the $Al_2O_3$(0001) substrate with varying thickness(17$\AA$-1000$\AA$). We measured x-ray diffraction(XRD) profiles by synchrotron radiation($\lambda$=1.12839 $\AA$) with four circle diffractometer. The full width half maximum(FWHM) of rocking curve for the AIN (0002) diffraction of the film grown at $500^{\circ}C$ was $0.029^{\circ}$. Also, we confirmed that the stress between AIN thin film and $Al_2O_3$(0001) substrate was reduced as increasing AIN film thickness, and the critical thickness of 400~500 $\AA$, defined as a lattice constant in the film agrees with that in a bulk without stress, was obtained.

  • PDF

Influence of thickness variation of annular plates on the buckling problem

  • Ciancio, P.M.;Reyes, J.A.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.4
    • /
    • pp.461-468
    • /
    • 2001
  • The aim of this work is to establish the coefficient that defines the critical buckling load for isotropic annular plates of variable thickness whose outer boundary is simply supported and subjected to uniform pressure. It is assumed that the plate thickness varies in a continuous way, according to an exponential law. The eigenvalues are determined using an optimized Rayleigh-Ritz method with polynomial coordinate functions which identically satisfy the boundary conditions at the outer edge. Good engineering agreement is shown to exist between the obtained results and buckling parameters presented in the technical literature.

Structural Optimization of a Thick-Walled Composite Multi-Cell Wing Box Using an Approximation Method

  • Kim, San-Hui;Kim, Pyung-Hwa;Kim, Myung-Jun;Park, Jung-sun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • In this paper, a thickness compensation function is introduced to consider the shear deformation and warping effect resulting from increased thickness in the composite multi-cell wing box. The thickness compensation function is used to perform the structure optimization of the multi-cell. It is determined by minimizing the error of an analytical formula using solid mechanics and the Ritz method. It is used to define a structural performance prediction expression due to the increase in thickness. The parameter is defined by the number of spars and analyzed by the critical buckling load and the limited failure index as a response. Constraints in structural optimization are composed of displacements, torsional angles, the critical buckling load, and the failure index. The objective function is the mass, and its optimization is performed using a genetic algorithm.