• 제목/요약/키워드: Critical thickness

검색결과 901건 처리시간 0.028초

(100) SrTi $O_3$ 단결정 기판위에 단일 액상 원료 MOCVD 법에 의한 YB $a_2$C $u_3$ $O_{7-x}$ 박막 제조 (Fabrication of YB $a_2$C $u_3$ $O_{7-x}$ film on a (100) SrTi $O_3$ single crystal substrate by single liquid source MOCVD method)

  • 전병혁;최준규;김호진;김찬중
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권3호
    • /
    • pp.16-20
    • /
    • 2004
  • YB $a_2$C $u_3$$O_{7-x}$ (YBCO) films were deposited on (100) SrTi $O_3$ single crystal substrates by a metal organic chemical vapor deposition (MOCVD) system of hot-wall type using single liquid source. Under the condition of the mole ratio of Y(tmhd)$_3$:Ba(tmhd)$_2$:Cu(tmhd)$_2$= 1:2.1:2.9. the deposition pressure of 10 Torr. the MO source line speed of 15 cm/min. the Ar/ $O_2$ flow rate of 800/800 sccm. YBCO films were prepared at the deposition temperatures of 780∼89$0^{\circ}C$. In case of the YBCO films with 2.2 ${\mu}{\textrm}{m}$ thickness deposited for 6 minutes at 86$0^{\circ}C$. XRD pattern showed complete c-axis growth and SEM morphology showed dense and crack-free surface. The atomic ratios of Ba/Y and Cu/Ba in the film were 1.92 and 1.56. respectively. The deposition rate of the film was as high as 0.37 ${\mu}{\textrm}{m}$/min. The critical temperature ( $T_{c.zero}$) of the film was 87K. The critical current of the film was 104 A/cm-width. and the critical current density was 0.47 MA/$\textrm{cm}^2$. For the thinner film of 1.3 ${\mu}{\textrm}{m}$ thickness. the critical current density of 0.62 MA/$\textrm{cm}^2$ was obtained.d.

Buckling analysis of nano composite sandwich Euler-Bernoulli beam considering porosity distribution on elastic foundation using DQM

  • Nejadi, Mohammad Mehdi;Mohammadimehr, Mehdi
    • Advances in nano research
    • /
    • 제8권1호
    • /
    • pp.59-68
    • /
    • 2020
  • In the present study, buckling analysis of sandwich composite (carbon nanotube reinforced composite and fiber reinforced composite) Euler-Bernoulli beam in two configurations (core and layers material), three laminates (combination of different angles) and two models (relative thickness of core according to peripheral layers) using differential quadrature method (DQM) is studied. Also, the effects of porosity coefficient and different types of porosity distribution on critical buckling load are discussed. Using sandwich beam, it shows a considerable enhancement in the critical buckling load when compared to ordinary composite. Actually, resistance against buckling in sandwich beam is between two to four times more. It is also showed the critical buckling loads of laminate 1 and 3 are significantly larger than the results of laminate 2. When Configuration 2 is used, the critical buckling load rises about 3 percent in laminate 1 and 3 compared to the results of configuration 1. The amount of enhancement for laminate 3 is about 17 percent. It is also demonstrated that the influence of the core height (thickness) in the case of lower carbon volume fractions is ignorable. Even though, when volume fraction of fiber increases, differences grow smoothly. It should be noticed the amount of decline has inverse relationship with the beam aspect ratio. Among three porosity patterns investigated, beam with the distribution of porosity Type 2 (downward parabolic) has the maximum critical buckling load. At the end, the first three modes of buckling will be demonstrated to investigate the effect of spring constants.

Evaluation of slip coefficient of slip critical joints with high strength bolts

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Kim, Kang-Seok;Kim, Woo-Bum
    • Structural Engineering and Mechanics
    • /
    • 제32권4호
    • /
    • pp.477-488
    • /
    • 2009
  • A slip critical joint has various values to adopt the proper slip coefficient in various conditions of faying surfaces in the following codes: AISC, AIJ and Eurocode 3. However, the Korean Building Code still regulates the unique slip coefficient, 0.45, regardless of the diverse faying conditions. In this study, the slip resistance test, including five kinds of surface treatments were conducted to obtain the proper slip coefficients available to steel plate KS SM490A. The faying surfaces were comprised of a clean mill, rust, red lead paint, zinc primer, and shot blast treatment. The candidates for high strength bolts were torque-shear bolts, torque-shear bolts with zinc coating, and ASTM A490 bolts. Based on the test results, the specimens with a shot blasted surface and rusted surface exhibited $k_s$, 0.61, and 0.5, respectively. It is recommended that the specimens with zinc primer exhibit $k_s{\geq}0.40$. The clean mill treated surface had prominently lower values, 0.27. For red lead painted treatment, the thickness of the coating affects the determinant of slip coefficient, so it is necessary to establish a minimum $k_s$ of 0.2, with a coating thickness of 65 ${\mu}m$. During 1,000 hours of relaxation, the uncoated surfaces exhibited the loss of clamping force behind 3%, while the coated surfaces within a certain limited thickness exhibited the loss of clamping within a range of 4.71% and 8.37%.

Buckling and vibration analyses of MGSGT double-bonded micro composite sandwich SSDT plates reinforced by CNTs and BNNTs with isotropic foam & flexible transversely orthotropic cores

  • Mohammadimehr, M.;Nejad, E. Shabani;Mehrabi, M.
    • Structural Engineering and Mechanics
    • /
    • 제65권4호
    • /
    • pp.491-504
    • /
    • 2018
  • Because of sandwich structures with low weight and high stiffness have much usage in various industries such as civil and aerospace engineering, in this article, buckling and free vibration analyses of coupled micro composite sandwich plates are investigated based on sinusoidal shear deformation (SSDT) and most general strain gradient theories (MGSGT). It is assumed that the sandwich structure rested on an orthotropic elastic foundation and make of four composite face sheets with temperature-dependent material properties that they reinforced by carbon and boron nitride nanotubes and two flexible transversely orthotropic cores. Mathematical formulation is presented using Hamilton's principle and governing equations of motions are derived based on energy approach and applying variation method for simply supported edges under electro-magneto-thermo-mechanical, axial buckling and pre-stresses loadings. In order to predict the effects of various parameters such as material length scale parameter, length to width ratio, length to thickness ratio, thickness of face sheets to core thickness ratio, nanotubes volume fraction, pre-stress load and orthotropic elastic medium on the natural frequencies and critical buckling load of double-bonded micro composite sandwich plates. It is found that orthotropic elastic medium has a special role on the system stability and increasing Winkler and Pasternak constants lead to enhance the natural frequency and critical buckling load of micro plates, while decrease natural frequency and critical buckling load with increasing temperature changes. Also, it is showed that pre-stresses due to help the axial buckling load causes that delay the buckling phenomenon. Moreover, it is concluded that the sandwich structures with orthotropic cores have high stiffness, but because they are not economical, thus it is necessary the sandwich plates reinforce by carbon or boron nitride nanotubes specially, because these nanotubes have important thermal and mechanical properties in comparison of the other reinforcement.

Enhancement of lower critical field of MgB2 thin films through disordered MgB2 overlayer

  • Soon-Gil, Jung;Duong, Pham;Won Nam, Kang;Byung-Hyuk, Jun;Chorong, Kim;Sunmog, Yeo;Tuson, Park
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권4호
    • /
    • pp.1-5
    • /
    • 2022
  • We investigate the effect of surface disorder on the lower critical field (Hc1) of MgB2 thin films with a thickness of 850 nm, where the disorder on the surface region is produced by the irradiation of 140 keV Co ions with the dose of 1 × 1014 ions/cm2. The thickness of the damaged region by the irradiation is around 143 nm, corresponding to ~17% of the whole thickness of the film, thereby forming the disordered MgB2 overlayer on the pure MgB2 layer. The magnetic field dependence of magnetization, M(H), for the pristine MgB2 thin film and the film with overlayer is measured at various temperatures, and Hc1 is determined from the difference (△M) between the Meissner line and magnetization signal with the criterion of △M = 10-3 emu. Intriguingly, the film with the disordered overlayer shows a remarkably large Hc1(0) = 108 Oe compared to the Hc1(0) = 84 Oe of pristine film, indicating that the disordered MgB2 overlayer on the pure MgB2 layer serves to prevent the penetration of vortices into the sample. These results provide new ideas for improving the superheating field to design high-performance superconducting radio-frequency cavities.

A MEIS Study on Ge Eppitaxial Growth on Si(001) with dynamically supplied Atomic Hydrogen

  • Ha, Yong-Ho;Kahng, Se-Jong;Kim, Se-Hun;Kuk, Young;Kim, Hyung-Kyung;Moon, Dae-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1998년도 제14회 학술발표회 논문개요집
    • /
    • pp.156-157
    • /
    • 1998
  • It is a diffcult and challenging pproblem to control the growth of eppitaxial films. Heteroeppitaxy is esppecially idfficult because of the lattice mismatch between sub-strate and depposited layers. This mismatch leads usually to a three dimensional(3D) island growth. But the use of surfactants such as As, Sb, and Bi can be beneficial in obtaining high quality heteroeppitaxial films. In this study medium energy ion scattering sppectroscoppy(MEIS) was used in order to reveal the growth mode of Ge on Si(001) and the strain of depposited film without and with dynamically supplied atomic hydrogen at the growth thempperature of 35$0^{\circ}C$. It was ppossible to control the growth mode from layer-by-layer followed by 3D island to layer-by-layer by controlling the hydrogen flux. In the absent of hydro-gen the film grows in the layer-by-layer mode within the critical thickness(about 3ML) and the 3D island formation is followed(Fig1). The 3D island formation is suppressed by introducing hydrogen resulting in layer-by-layer growth beyond the critical thickness(Fig2) We measured angular shift of blocking dipp in order to obtain the structural information on the thin films. In the ppressence of atomic hydrogen the blocking 야 is shifted toward higher scattering angle about 1。. That means the film is distorted tetragonally and strained therefore(Fig4) In other case the shift of blocking dipp at 3ML is almost same as pprevious case. But above the critical thickness the pposition of blocking dipp is similar to that of Si bulk(Fig3). It means the films is relaxed from the first layer. There is 4.2% lattice mismatch between Ge and Si. That mismatch results in about 2。 shift of blocking dipp. We measured about 1。 shift. This fact could be due to the intermixing of Ge and Si. This expperimental results are consistent with Vegard's law which says that the lattice constant of alloys is linear combination of the lattic constants of the ppure materials.

  • PDF

Experiments Investigating the Local Paper Structure

  • 성용주
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2002년도 추계학술발표논문집
    • /
    • pp.36-46
    • /
    • 2002
  • The accurate characterization of paper structure may provide critical information for ideal selection of raw materials and papermaking processes as well as for predicting the behavior and the quality of final paper products. In this study, local paper structure and the relationship among the structural parameters, thickness, grammage, apparent density and surface roughness of various handsheet and commercial paper samples were evaluated by using recently developed methods. A new concept of surface roughness was also introduced. The results demonstrate that there is significant overestimation in the measured thickness when using the conventional caliper method that originates from the surface roughness and poor paper formation. A novel non-contact thickness tester, referred to as the twin laser profilometer(TLP), provided results that were not subject to these artifacts and thus provided the local intrinsic thickness and consequently the local intrinsic apparent density.

  • PDF

원전감육배관 UT 두께측정 결과의 신뢰도 평가를 위한 다자비교시험 (Round Robin Test for Reliability Evaluation of Ultrasonic Thickness Measurement Results in Nuclear Power Plant Pipelines)

  • 이승준;이원근;이준현;이성호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1702-1707
    • /
    • 2007
  • The reduction of pipe-thickness induced by flow accelerated corrosion (FAC) is one of the most serious problems on the maintenance of piping system in nuclear power plants (NNP). If the thickness of a pipe component is reduced below the critical level, it cannot sustain pressure and consequently results in leakage or rupture. For this reason, wall thinning by FAC has been inspected in secondary side piping systems in NPPs. In this research Round Robin Test (RRT) was conducted to verify confidence of wall thinning measurement system in NPP. 12 inspectors from 3 companies participated and 23 specimens were used according to standard practice in RRT. The gage R&R analysis was introduced in regard to repeatability and reproducibility that are affected to measurement system errors. Confidence intervals of thickness measurement system were obtained.

  • PDF

전송선 이론에 의한 적외선 흡수 구조체의 흡수율 모의시험 (Modeling and simulation on an IR absorbing structure with the cascaded transmission line model)

  • 박승만
    • 전기학회논문지
    • /
    • 제62권12호
    • /
    • pp.1725-1729
    • /
    • 2013
  • In this paper, the modeling and simulation of infrared absorption in an infrared absorbing structure with the cascaded transmission line model were carried out. Each layer in the infrared absorbing structure can be modeled as a characteristic impedance of the cascaded transmission line model. The simulation results show that the cavity thickness to get a maximum absorption should be less than a quarter wavelength, which is somewhat different from prevalent thickness. It can be assured that the sheet resistance of an absorbing layer to get a maximum absorption is $377{\Omega}/{\square}$, that the thickness of the absorbing layer dose not affect the spectral characteristics of absorption. It is also shown that the thickness of the active layer is not critical to the IR absorption. It can also be assured that the validation of this modeling is proved in comparison with the previous results from similar absorbing structures.

열진공성형에서 발생하는 필름의 두께 분포와 패턴 변형에 관한 연구 (A study on the thickness distribution and pattern deformation of films in vacuum-assisted thermoforming)

  • 성겸손;이호상
    • Design & Manufacturing
    • /
    • 제12권2호
    • /
    • pp.5-10
    • /
    • 2018
  • Vacuum-assisted thermoforming is one of the critical steps for successful application of film insert molding(FIM) to parts of complex shape. In this study, the simulations and experiments of thermoforming processes were performed to investigate the effects of process conditions on thickness distribution and printed pattern deformation of films in vacuum-assisted thermoforming. The film thickness uniformity increased with decreasing film heating time, whereas it increased with increasing vacuum delay time. After thermoforming of films with uniform pattern space of 5mm, the maximum space was 9.432mm. Based on the simulation, a modified pattern was calculated to obtain uniform spaces after thermoforming. In the experiments for film with the modified pattern, the maximum space appeared 5.837mm. In, addition. the predicted patterns were in good agreement with the experimental results.