• 제목/요약/키워드: Critical temperature difference

검색결과 191건 처리시간 0.027초

세라믹 Nd:YAG 레이저 매질의 균열 해석 (Analysis of Crack Behavior in a Ceramic Nd:YAG)

  • 김덕래;김병태
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.186-186
    • /
    • 2010
  • The crack behavior in the ceramic Nd:YAG at a laser-diode end-pumped Nd:YAG ceramic laser was investigated. The fracture critical temperature difference of the ceramic Nd:YAG is about $355^{\circ}C$. The fracture of the 2 at% and the 4 at.% ceramic Nd:YAG occurred more than 14.9 W and 6.9 W pump powers, respectively, under lasing conditions.

  • PDF

1차원 FDM을 이용한 고온 초전도체(Au/YBCO) 박막의 안정성 해석 (Stability analysis of high-temperature superconductor(Au/YBCO) film using one-dimensional FDM)

  • 김진석;설승윤
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제4권2호
    • /
    • pp.27-30
    • /
    • 2002
  • One dimensional conduction equation is solved by finite difference method, to analyse the stability of Au/YBCO film deposited on a sapphire substrate. Joule heat is included in the case of current sharing state. The analysis shows the quench and recovery of superconductor depending on the amount of thermal disturbance release on the center surface of superconductor. The critical disturbance energies for different filling factor and operating current are calculated.

복사열손실이 있는 비예혼합 튜브형 화염에 관한 수치 해석적 연구 (A Numerical Study of Opposed Nonpremixed Tubular Flames with Radiative Heat Loss)

  • 박현수;유춘상
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.247-250
    • /
    • 2015
  • The characteristics of opposed nonpremixed tubular flames with radiation heat loss are investigated using linear stability analysis and 2-D numerical simulations. Two extinction limits, as the $Damk{\ddot{o}}hler$ number is small or large, are confirmed using finite difference method with a simple continuation method. It is verified that the results of linear stability analysis predict the number of flame cells and the critical Da starting cellular instability or amplification of temperature near both extinction limits with good resolution.

  • PDF

냉동기 펌프다운 운전성능에 관한 연구 (A Study on Pump Down Operation Performance of Refrigerator)

  • 김철수;정한식;정효민
    • 설비공학논문집
    • /
    • 제18권12호
    • /
    • pp.964-970
    • /
    • 2006
  • Vapor compression refrigerators have much critical variables such as the controls of temperature and pressure switches, control durations and operating hours of electronic valves. This study compares and analyzes the data which is obtained from system controlling of the evaporation temperatures which are generally used in automatic pump down operating systems. Through this study, the automatic evaporation control operation system will be more ideal for the system to keep the proper temperature distribution depending on the purpose of evaporation side. The automatic pump down control operation is more appropriate for the system to aim at the effective use of evaporation side without using the temperature difference. And this test will be proved that the changes at the low pressure side didn't have significant impacts on the high pressure side.

나노 유체(Nanofluids)의 열전도도 (Thermal Conductivities of Nanofluids)

  • 장석필
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1388-1393
    • /
    • 2004
  • Investigators have been perplexed with the thermal phenomena behind the recently discovered nanofluids, fluids with unprecedented stability of suspended nanoparticles although huge difference in the density of nanoparticles and fluid. For example, nanofluids have anomalously high thermal conductivities at very low fraction, strongly temperature-dependent and size-dependent conductivities, and three-fold higher critical heat flux than that of base fluids. Traditional conductivity theories such as the Maxwell or other macroscale approaches cannot explain why nanofluids have these intriguing features. So in this paper, we devise a theoretical model that accounts for the fundamental role of dynamic nanoparticles in nanofluids. The proposed model not only captures the concentration and temperature-dependent conductivity, but also predicts strongly size-dependent conductivity. Furthermore, we physically explain the new phenomena for nanofluids. In addition, based on a proposed model, the effects of various parameters such as the ratio of thermal conductivity of nanofluids to that of a base fluid, volume fraction, nanoparticle size, and temperature on the thermal conductivities of nanofluids are investigated.

  • PDF

Influences of Bending Temperature on the I$_{c}$ Degradation Behavior of Bi-2223 tapes under Bending

  • Shin Hyung Seop;Dizon John Ryan C.;Katagiri Kazumune;Kuroda Tsuneo
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제7권2호
    • /
    • pp.11-15
    • /
    • 2005
  • The I$_{c}$ degradation behavior of Bi-2223 tapes bent at RT and 77K were investigated using the bending device invented by Goldacker. Test results on fixing the tape at RT and 17K showed no difference. At 17K and RT bending, the critical strain was 0.67 and 0.50$\%$, respectively, for the VAM-l tape. For the AMSC tape, it was 0.94 and 0.88$\%$, respectively. These results show that there is additional residual stress in the superconducting filaments to be bent at 17K which shifts the formation of cracks into smaller bending radii. This was proved by computational analysis based on the mixture rule of composites. For the VAM-l tape, the Ie degradation behavior using the Goldacker type device shifted to higher strain levels at about 0.5$\%$, as compared with the FRP sample holders which have a critical bending strain of about 0.24$\%$. Also, for the externally reinforced AMSC tape, Ie degradation using the Goldacker type device begins at a higher strain level, at 0.88$\%$ as compared with using FRP sample holders, at 0.74$\%$. The difference between both cases can be explained by the tensile' and thermal stresses that the tapes were subjected to during fixing (soldering) when the FRP sample holders were used.

Wind fragility analysis of RC chimney with temperature effects by dual response surface method

  • Datta, Gaurav;Sahoo, Avinandan;Bhattacharjya, Soumya
    • Wind and Structures
    • /
    • 제31권1호
    • /
    • pp.59-73
    • /
    • 2020
  • Wind fragility analysis (WFA) of concrete chimney is often executed disregarding temperature effects. But combined wind and temperature effect is the most critical limit state to define the safety of a chimney. Hence, in this study, WFA of a 70 m tall RC chimney for combined wind and temperature effects is explored. The wind force time-history is generated by spectral representation method. The safety of chimney is assessed considering limit states of stress failure in concrete and steel. A moving-least-squares method based dual response surface method (DRSM) procedure is proposed in WFA to alleviate huge computational time requirement by the conventional direct Monte Carlo simulation (MCS) approach. The DRSM captures the record-to-record variation of wind force time-histories and uncertainty in system parameters. The proposed DRSM approach yields fragility curves which are in close conformity with the most accurate direct MCS approach within substantially less computational time. In this regard, the error by the single-level RSM and least-squares method based DRSM can be easily noted. The WFA results indicate that over temperature difference of 150℃, the temperature stress is so pronounced that the probability of failure is very high even at 30 m/s wind speed. However, below 100℃, wind governs the design.

Effect of Temperature Associated with Early Growth Stimulus on Shortening of Heading Dates in Rice

  • Song, Moon-Tae;Lee, Jeom-Ho;Cho, Youn-Sang;Hwang, Hung-Goo
    • Plant Resources
    • /
    • 제5권2호
    • /
    • pp.155-160
    • /
    • 2002
  • The heading date is known to be controlled by two kinds of genetic constituent, photosensitivity and basic vegetable phase. For the latter, the effect of temperature in early growth period is critical to determine the shortness of vegetative growth periods in plant's life. A phytotron experiment on 55 rice cultivars, consisting of two ecotypes of rices, indica and japonica, was conducted at high and low temperature treatments at early growth stage to investigate the possible role of plant growth stimulus by high temperature to associate with shortening of heading date. The high temperature during the early growth stage stimulated the rice growth as measured by plant height with much difference of the growth response between indica and japonica. The conclusive finding that these growth stimulus in early growth stage was highly correlated with the acceleration of heading is, more or less, correlated with the heading of the late growth stage although we could not conclude the genes for early plant growth stimulus by high temperature is the same genes as the genes for accelerating of heading in the late growth stage of plants.

  • PDF

Infrared Estimation of Canopy Temperature as Crop Water Stress Indicator

  • Kim, Minyoung;Kim, Seounghee;Kim, Youngjin;Choi, Yonghun;Seo, Myungchul
    • 한국토양비료학회지
    • /
    • 제48권5호
    • /
    • pp.499-504
    • /
    • 2015
  • Decision making by farmers regarding irrigation is critical for crop production. Therefore, the precision irrigation technique is very important to improve crop quality and yield. Recently, much attention has been given to remote sensing of crop canopy temperature as a crop water-stress indicator, because it is a scientifically based and easily applicable method even at field scales. This study monitored a series of time-variant canopy temperature of cucumber under three different irrigation treatments: under-irrigation (control), optimal-irrigation, and over-irrigation. The difference between canopy temperature ($T_c$) and air temperature ($T_a$), $T_c-T_a$, was calculated as an indicator of cucumber water stress. Vapor pressure deficit (VPD) was evaluated to define water stress on the basis of the temperature difference between leaf and air. The values of $T_c-T_a$ was negatively related to VPD; further, cucumber growth in the under- and over-irrigated fields showed water stress, in contrast to that grown in the optimally irrigated field. Thus, thermal infrared measurements could be useful for evaluating crop water status and play an important role in irrigation scheduling of agricultural crops.

PDP 제조 공정시 유리의 열충격 파손 예측 (Prediction of thermal shock failure of glass during PDP manufacturing process)

  • 김재현;최병익;이학주
    • 한국정밀공학회지
    • /
    • 제21권2호
    • /
    • pp.122-129
    • /
    • 2004
  • There is an increasing need for large flat panel display devices. PDP (Plasma Display Panel) is one of the most promising candidates for this need. Thermal shock failure of PDP glass during manufacturing process is a critical issue in PDP industry since it is closely related to the product yield and the production speed. In this study, thermal shock resistance of PDP glass is measured by water quenching test and an analysis scheme is described for estimating transient temperature and stress distributions during thermal shock. Based on the experimental data and the analysis results, a simple procedure for predicting the thermal shock failure of PDP glass is proposed. The fast cooling process for heated glass plates can accelerate the speed of PDP production, but often leads to thermal shock failure of the glass plates. Therefore, a design guideline for preventing the failure is presented from a viewpoint of high speed PDP manufacturing process. This design guideline can be used for PDP process design and thermal -shock failure prevention.