• Title/Summary/Keyword: Critical temperature

Search Result 2,702, Processing Time 0.04 seconds

The Dependence of the Critical Temperature on the Dimensions of the Electron Motion (전자유체의 차원에 따른 임계온도의 변화)

  • Park, Seong-Hun;Kim, Mi-Yeon;Chair, Tong-Seek;Kim, Won-Soo
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.6
    • /
    • pp.401-408
    • /
    • 1996
  • In general, the high temperature superconductors have two-dimensional anisotropic structures. It is important to investigate the dependence of the critical temperature on the dimensions of the electron's motion. The equation of state for electron gas is deduced which describes the electron's motion in superconductors using the kinetic theory of gas. And the critical temperatures of three, two, and one dimensional gases were calculated. According to these equations, restricting the dimension of the electron's motion induces the increase of the critical temperatures. This implies the possibility that the multi-critical temperature of some superconductors is caused by the change of the dimension related to the pathways of the electron.

  • PDF

A Study on the Spontaneous Ignition Characteristics and Ignition Temperature Estimation of Activated Carbon (활성탄의 자연발화 특성과 발화온도 예측에 관한 연구)

  • 최재욱
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.3
    • /
    • pp.74-81
    • /
    • 1994
  • The critical spontaneous ignition temperature for activated carbon were observed by performing experiments for granulated activated carbon with varying the period. As the results of the experiments, the critical spontaneous ignition temperature according to period of 0.5hr, 1.5hr and 2.5hr was 177.5$^{\circ}C$, 176.5$^{\circ}C$ and 172.5$^{\circ}C$ respectively, and the approximate expression of the critical spontaneous ignition temperature obtained for ambient temperature amplitudes was as follow ; $\delta$$_{c}$ (X, $\omega$)=$\delta$$_{c}${1-0.381 exp(-0.930.$\omega$$^{0.811}$)}.

  • PDF

Prediction of Thermal Fatigue Life of Alumina ceramics (알루미나 세라믹스의 열피로 수명 예측)

  • 정우찬;한봉석;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.871-875
    • /
    • 1999
  • Theoretical equation to calculate thermal fatigue life was derived in which slow crack growth theory was adopted. The equation is function of crack growth exponent n. Cyclic thermal fatigue tests were performed at temperature difference of 175, 187 and 200$^{\circ}C$ respectively. At each temperature difference critical thermal fatigue life cycles of the alumina ceramics were 180,37 and 7 cycles. And theoretical thermal fatigue life cycles were calculated as 172, 35 and 7 cycles at the same temperature difference conditions. Therefore thermal fatigue behavior of alumina ceramics can be represented by derived equation. Also theoretical single cycle critical thermal shock temperature difference can be calculated by this equation and the result was consistent with the experimental result well.

  • PDF

A Theoretical Study on the Low Transition Temperature of VO2 Metamaterials in the THz Regime

  • Kyoung, Jisoo
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.583-589
    • /
    • 2022
  • Vanadium dioxide (VO2) is a well-known material that undergoes insulator-to-metal phase transition near room temperature. Since the conductivity of VO2 changes several orders of magnitude in the terahertz (THz) spectral range during the phase transition, VO2-based active metamaterials have been extensively studied. Experimentally, it is reported that the metal nanostructures on the VO2 thin film lowers the critical temperature significantly compared to the bare film. Here, we theoretically studied such early transition phenomena by developing an analytical model. Unlike experimental work that only measures transmission, we calculate the reflection and absorption and demonstrate that the role of absorption is quite different for bare and patterned samples; the absorption gradually increases for bare film during the phase transition, while an absorption peak is observed at the critical temperature for the metamaterials. In addition, we also discuss the gap width and VO2 thickness effects on the transition temperatures.

Thermoelastic Instability of the Layer Sliding between Two Rigid Non-conducting Half-planes (단단한 비전도 반평판 사이에서 미끄럼 운동하는 평판층의 열탄성 불안정성)

  • 오재응;하태원;조용구;김흥섭;이정윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.114-121
    • /
    • 2004
  • Frictional heating in brakes causes thermoelastic distortion of the contacting bodies and hence affects the contact pressure distribution. The resulting thermo-mechanical coupling can cause thermoelastic instability (TEI) if the sliding speed is sufficiently high, leading to non-uniform heating called hot spots and low frequency vibration known as hot judder. The vibration of brakes to the known phenomenon of frictionally-excited thermoelastic instability is estimated studying the interface temperature and pressure evolution with time. A simple model has been considered where a layer with half-thickness$\alpha$slides with speed V between two half-planes which are rigid and non-conducting. The advantage of this properlysimple model permits us to deduce analytically the critical conditions for the onset of instability, which is the relation between the critical speed and the growth rate of the interface temperature and pressure. Symmetrical component of pressure and temperature distribution at the layer interfaces can be more unstable than antisymmetrical component. As the thickness $\alpha$ reduces, the system becomes more apt to thermoelastic instability. For perturbations with wave number smaller than the critical$m_{cr}$ the temperature increases with m vice versa for perturbations with wave number larges than $m_{cr}$ , the temperature decreases with m.

Effect of MgO on the Viscous Behavior of CaO-SiO2-Al2O3-MgO Welding Flux System (CaO-SiO2-Al2O3-MgO계 용접 플럭스계의 점성에 미치는 MgO의 영향성에 관한 연구)

  • Kim, Hyuk;Jung, Eun Jin;Jeon, Young Duck;Min, Dong Joon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.114-120
    • /
    • 2009
  • The viscosities of $CaO-SiO_2-Al_2O_3-MgO$ flux were measured under the condition of $CaO/SiO_2=1.0-1.3$ and 5-20 wt%MgO. Submerged arc welding flux with $5wt%Al_2O_3$ content had the lowest critical temperature and widest solid-liquid coexisting region at about 5 wt%MgO. It indicateds that both critical temperature and viscosity depend on the kind of primary phase of molten flux. Viscous behavior of the molten flux at 1773 K was analyzed in the view of silicate structure changed by FT-IR spectroscopy. Based on the critical temperature and the behavior of viscosity at a fixed temperature, it could be proposed that the contents of MgO and $Al_2O_3$ in SAW flux show a pronounced effect on preventing contamination in maintaining the liquid phase flux after welding process.

Katayama Equation Modified on the Basis of Critical-Scaling Theory (임계 축척 이론을 이용한 카타야마 식의 수정)

  • Lim, Kyung-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.185-191
    • /
    • 2006
  • It is desirable to have an accurate expression on the temperature dependence of surface(or interfacial) tension ${\sigma}$, because most of the interfacial thermodynamic functions can be derived from it. There have been proposed several equations on the temperature dependence of the surface tension, ${\sigma}(T)$. Among them $E{\ddot{o}}tv{\ddot{o}}s$ equation and the one modified by Katayama, which is called Katayama equation, for improving accuracies of $E{\ddot{o}}tv{\ddot{o}}s$ equation close to critical points, have been most well-known. In this article Katayama equation is interpreted on the basis of the cell model to understand the nature of the equation. The cell model results in an expression very similar to Katayama equation. This implies that, although $E{\ddot{o}}tv{\ddot{o}}s$ and Katayama equations were obtained on the basis of experimental results, they have a sound theoretical background. The Katayama equation is also modified with the phase volume replaced with a critical scaling expression. The modified Katayama equation becomes a power-law equation with the exponent slightly different from the value obtained by critical-scaling theory. This implies that Katayama equation can be replaced by a critical-scaling equation which is proven to be accurate.

Deposition condition of YBCO films by continuous source supplying MOCVD method (연속 연료공급식 MOCVD법으로 증착시킨 YBCO 박막의 증착조건)

  • Kim Ho-Jin;Joo Jin-ho;Choi Jun-Kyu;Jun Byung-Hyuk;Kim Chan-Joong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.6-11
    • /
    • 2004
  • YBa$_2$Cu$_3$$O_{7-x}$ (YBCO) films were deposited on MgO(100) and SrTiO$_3$(100) single crystal substrates by cold-wall type MOCVD method using continuous source supplying system. Under the deposition temperature of 740∼76$0^{\circ}C$, c-axis oriented YBCO films were obtained. In case of the YBCO films deposited on MgO (100) single crystal substrate, the critical temperature (T$_{c}$) was under 81 K regardless of the deposition conditions, whereas T$_{c}$ of the YBCO films deposited on SrTiO$_3$(100) single crystal substrate was 83∼84 K. The critical current (I$_{c}$) of the YBCO film deposited on SrTiO$_3$(100) single crystal substrate for 30 min was 49 A/cm-width and the critical current density (J$_{c}$) was 0.82 MA/$\textrm{cm}^2$ to film thickness of 0.6 ${\mu}{\textrm}{m}$. I$_{c}$ increased to 84.4 A/cm-width as the deposition time increased to 50 min, but J$_{c}$ decreased to 0.53 MA/$\textrm{cm}^2$ to film thickness of 1.8 ${\mu}{\textrm}{m}$.rm}{m}$.

Effects of critical viscosity temperature and flux feeding ratio on the slag flow behavior on the wall of a coal gasifier (석탄 가스화시 회분의 임계점도온도 및 플럭스 비율 변화에 따른 벽면 슬래그 거동 특성 분석)

  • Ye, Insoo;Ryu, Changkook;Kim, Bongkeun
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.21-24
    • /
    • 2014
  • In the entrained-flow coal gasifier, coal ash turns into a molten slag most of which deposits onto the wall to form liquid and solid layers. Critical viscosity refers to the viscosity at the interface of the two layers. The slag layers play an important role in protecting the wall from physical/chemical attack from the hot syngas and in continuously discharging the ash to the slag tap at the bottom of the gasifier. For coal with high ash melting point and slag viscosity, CaO-based flux is added to coal to lower the viscosity. This study evaulates the effect of critical viscosity temperature and ash/flux ratio on the slag behavior using numerical modelling in a commercial gasifier. The changes in the slag layer thickness, heat transfer rate, surface temperature and velocity profiles were analyzed to understand the underlying mechanism of slag flow and heat transfer.

  • PDF

The Study on the Hardness of Ointment(IV) -Influences of Temperature on the Apparent Logarithmic Hardness of Ointments- (연고제(軟膏劑)의 경도(硬度)에 관한 연구(硏究)(IV) -온도(溫度)의 변화(變化)가 연고제(軟膏劑)의 대수경도(對數硬度) 미치는 영향(影響)-)

  • Lee, Sook-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • v.8 no.3
    • /
    • pp.24-31
    • /
    • 1978
  • The relationship between temperature and apparent logarithmic hardness of ointments were clearly demonstrated. The followings were obtained as the results: 1. When the ointment base was mixed with additives and heated or cooled at various temperatures, the apparent logarithmic hardness in the first trend before reaching the critical point is subject to change mainly by the contents of the additive while in the secondary trend after reaching the critical point is subject to change mainly by the temperature. 2. No Change in the critical point was observed at different temperatures. It is assumed that the crittical point of such ointment bases has no relationship with temperatures and that the critical point itself should rather depend on the physicochemical properties of the additives.

  • PDF